Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review
Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial fe...
Ausführliche Beschreibung
Autor*in: |
Jindong Zhang [verfasserIn] Yangyang Guo [verfasserIn] Liping Duan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Medicine - Frontiers Media S.A., 2014, 9(2022) |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fmed.2022.773105 |
---|
Katalog-ID: |
DOAJ029071127 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029071127 | ||
003 | DE-627 | ||
005 | 20230307132730.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fmed.2022.773105 |2 doi | |
035 | |a (DE-627)DOAJ029071127 | ||
035 | |a (DE-599)DOAJc679f7810c604d4eac08a1a3aceb8fd8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R5-920 | |
100 | 0 | |a Jindong Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods. | ||
650 | 4 | |a gut microbiome | |
650 | 4 | |a microbial metabolites | |
650 | 4 | |a fecal microbiota transplantation | |
650 | 4 | |a response | |
650 | 4 | |a inflammatory bowel disease | |
653 | 0 | |a Medicine (General) | |
700 | 0 | |a Yangyang Guo |e verfasserin |4 aut | |
700 | 0 | |a Liping Duan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Medicine |d Frontiers Media S.A., 2014 |g 9(2022) |w (DE-627)789482991 |w (DE-600)2775999-4 |x 2296858X |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fmed.2022.773105 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c679f7810c604d4eac08a1a3aceb8fd8 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fmed.2022.773105/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-858X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |
author_variant |
j z jz y g yg l d ld |
---|---|
matchkey_str |
article:2296858X:2022----::etrsfumcoimascaewtrsossoeamcoittaslnainoifamt |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
R |
publishDate |
2022 |
allfields |
10.3389/fmed.2022.773105 doi (DE-627)DOAJ029071127 (DE-599)DOAJc679f7810c604d4eac08a1a3aceb8fd8 DE-627 ger DE-627 rakwb eng R5-920 Jindong Zhang verfasserin aut Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods. gut microbiome microbial metabolites fecal microbiota transplantation response inflammatory bowel disease Medicine (General) Yangyang Guo verfasserin aut Liping Duan verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 9(2022) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:9 year:2022 https://doi.org/10.3389/fmed.2022.773105 kostenfrei https://doaj.org/article/c679f7810c604d4eac08a1a3aceb8fd8 kostenfrei https://www.frontiersin.org/articles/10.3389/fmed.2022.773105/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
spelling |
10.3389/fmed.2022.773105 doi (DE-627)DOAJ029071127 (DE-599)DOAJc679f7810c604d4eac08a1a3aceb8fd8 DE-627 ger DE-627 rakwb eng R5-920 Jindong Zhang verfasserin aut Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods. gut microbiome microbial metabolites fecal microbiota transplantation response inflammatory bowel disease Medicine (General) Yangyang Guo verfasserin aut Liping Duan verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 9(2022) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:9 year:2022 https://doi.org/10.3389/fmed.2022.773105 kostenfrei https://doaj.org/article/c679f7810c604d4eac08a1a3aceb8fd8 kostenfrei https://www.frontiersin.org/articles/10.3389/fmed.2022.773105/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
allfields_unstemmed |
10.3389/fmed.2022.773105 doi (DE-627)DOAJ029071127 (DE-599)DOAJc679f7810c604d4eac08a1a3aceb8fd8 DE-627 ger DE-627 rakwb eng R5-920 Jindong Zhang verfasserin aut Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods. gut microbiome microbial metabolites fecal microbiota transplantation response inflammatory bowel disease Medicine (General) Yangyang Guo verfasserin aut Liping Duan verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 9(2022) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:9 year:2022 https://doi.org/10.3389/fmed.2022.773105 kostenfrei https://doaj.org/article/c679f7810c604d4eac08a1a3aceb8fd8 kostenfrei https://www.frontiersin.org/articles/10.3389/fmed.2022.773105/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
allfieldsGer |
10.3389/fmed.2022.773105 doi (DE-627)DOAJ029071127 (DE-599)DOAJc679f7810c604d4eac08a1a3aceb8fd8 DE-627 ger DE-627 rakwb eng R5-920 Jindong Zhang verfasserin aut Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods. gut microbiome microbial metabolites fecal microbiota transplantation response inflammatory bowel disease Medicine (General) Yangyang Guo verfasserin aut Liping Duan verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 9(2022) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:9 year:2022 https://doi.org/10.3389/fmed.2022.773105 kostenfrei https://doaj.org/article/c679f7810c604d4eac08a1a3aceb8fd8 kostenfrei https://www.frontiersin.org/articles/10.3389/fmed.2022.773105/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
allfieldsSound |
10.3389/fmed.2022.773105 doi (DE-627)DOAJ029071127 (DE-599)DOAJc679f7810c604d4eac08a1a3aceb8fd8 DE-627 ger DE-627 rakwb eng R5-920 Jindong Zhang verfasserin aut Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods. gut microbiome microbial metabolites fecal microbiota transplantation response inflammatory bowel disease Medicine (General) Yangyang Guo verfasserin aut Liping Duan verfasserin aut In Frontiers in Medicine Frontiers Media S.A., 2014 9(2022) (DE-627)789482991 (DE-600)2775999-4 2296858X nnns volume:9 year:2022 https://doi.org/10.3389/fmed.2022.773105 kostenfrei https://doaj.org/article/c679f7810c604d4eac08a1a3aceb8fd8 kostenfrei https://www.frontiersin.org/articles/10.3389/fmed.2022.773105/full kostenfrei https://doaj.org/toc/2296-858X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
language |
English |
source |
In Frontiers in Medicine 9(2022) volume:9 year:2022 |
sourceStr |
In Frontiers in Medicine 9(2022) volume:9 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
gut microbiome microbial metabolites fecal microbiota transplantation response inflammatory bowel disease Medicine (General) |
isfreeaccess_bool |
true |
container_title |
Frontiers in Medicine |
authorswithroles_txt_mv |
Jindong Zhang @@aut@@ Yangyang Guo @@aut@@ Liping Duan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
789482991 |
id |
DOAJ029071127 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029071127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307132730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmed.2022.773105</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029071127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc679f7810c604d4eac08a1a3aceb8fd8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jindong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gut microbiome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microbial metabolites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fecal microbiota transplantation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inflammatory bowel disease</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yangyang Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liping Duan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Medicine</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">9(2022)</subfield><subfield code="w">(DE-627)789482991</subfield><subfield code="w">(DE-600)2775999-4</subfield><subfield code="x">2296858X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmed.2022.773105</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c679f7810c604d4eac08a1a3aceb8fd8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fmed.2022.773105/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-858X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Jindong Zhang |
spellingShingle |
Jindong Zhang misc R5-920 misc gut microbiome misc microbial metabolites misc fecal microbiota transplantation misc response misc inflammatory bowel disease misc Medicine (General) Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review |
authorStr |
Jindong Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)789482991 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R5-920 |
illustrated |
Not Illustrated |
issn |
2296858X |
topic_title |
R5-920 Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review gut microbiome microbial metabolites fecal microbiota transplantation response inflammatory bowel disease |
topic |
misc R5-920 misc gut microbiome misc microbial metabolites misc fecal microbiota transplantation misc response misc inflammatory bowel disease misc Medicine (General) |
topic_unstemmed |
misc R5-920 misc gut microbiome misc microbial metabolites misc fecal microbiota transplantation misc response misc inflammatory bowel disease misc Medicine (General) |
topic_browse |
misc R5-920 misc gut microbiome misc microbial metabolites misc fecal microbiota transplantation misc response misc inflammatory bowel disease misc Medicine (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Medicine |
hierarchy_parent_id |
789482991 |
hierarchy_top_title |
Frontiers in Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)789482991 (DE-600)2775999-4 |
title |
Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review |
ctrlnum |
(DE-627)DOAJ029071127 (DE-599)DOAJc679f7810c604d4eac08a1a3aceb8fd8 |
title_full |
Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review |
author_sort |
Jindong Zhang |
journal |
Frontiers in Medicine |
journalStr |
Frontiers in Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jindong Zhang Yangyang Guo Liping Duan |
container_volume |
9 |
class |
R5-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Jindong Zhang |
doi_str_mv |
10.3389/fmed.2022.773105 |
author2-role |
verfasserin |
title_sort |
features of gut microbiome associated with responses to fecal microbiota transplantation for inflammatory bowel disease: a systematic review |
callnumber |
R5-920 |
title_auth |
Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review |
abstract |
Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods. |
abstractGer |
Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods. |
abstract_unstemmed |
Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review |
url |
https://doi.org/10.3389/fmed.2022.773105 https://doaj.org/article/c679f7810c604d4eac08a1a3aceb8fd8 https://www.frontiersin.org/articles/10.3389/fmed.2022.773105/full https://doaj.org/toc/2296-858X |
remote_bool |
true |
author2 |
Yangyang Guo Liping Duan |
author2Str |
Yangyang Guo Liping Duan |
ppnlink |
789482991 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fmed.2022.773105 |
callnumber-a |
R5-920 |
up_date |
2024-07-03T20:59:40.696Z |
_version_ |
1803593062231834624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029071127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307132730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmed.2022.773105</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029071127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc679f7810c604d4eac08a1a3aceb8fd8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jindong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle–Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gut microbiome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microbial metabolites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fecal microbiota transplantation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inflammatory bowel disease</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yangyang Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liping Duan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Medicine</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">9(2022)</subfield><subfield code="w">(DE-627)789482991</subfield><subfield code="w">(DE-600)2775999-4</subfield><subfield code="x">2296858X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmed.2022.773105</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c679f7810c604d4eac08a1a3aceb8fd8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fmed.2022.773105/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-858X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.4009314 |