Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles
Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</...
Ausführliche Beschreibung
Autor*in: |
Ling Liu [verfasserIn] Tianyi Zhang [verfasserIn] Xiaowan Yu [verfasserIn] Vitumbiko Mkandawire [verfasserIn] Jiadi Ma [verfasserIn] Xilin Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials - MDPI AG, 2009, 15(2022), 9, p 3130 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:9, p 3130 |
Links: |
---|
DOI / URN: |
10.3390/ma15093130 |
---|
Katalog-ID: |
DOAJ029234786 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029234786 | ||
003 | DE-627 | ||
005 | 20240414224940.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ma15093130 |2 doi | |
035 | |a (DE-627)DOAJ029234786 | ||
035 | |a (DE-599)DOAJe3b62a03877d4ea182dc36dfd7de9fae | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH201-278.5 | |
050 | 0 | |a QC120-168.85 | |
100 | 0 | |a Ling Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM. | ||
650 | 4 | |a insoluble humic acid | |
650 | 4 | |a tourmaline | |
650 | 4 | |a iron ion (Fe<sup<2+</sup<) | |
650 | 4 | |a manganese ion (Mn<sup<2+</sup<) | |
650 | 4 | |a adsorption kinetics | |
650 | 4 | |a isothermal adsorption | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Microscopy | |
653 | 0 | |a Descriptive and experimental mechanics | |
700 | 0 | |a Tianyi Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xiaowan Yu |e verfasserin |4 aut | |
700 | 0 | |a Vitumbiko Mkandawire |e verfasserin |4 aut | |
700 | 0 | |a Jiadi Ma |e verfasserin |4 aut | |
700 | 0 | |a Xilin Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials |d MDPI AG, 2009 |g 15(2022), 9, p 3130 |w (DE-627)595712649 |w (DE-600)2487261-1 |x 19961944 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:9, p 3130 |
856 | 4 | 0 | |u https://doi.org/10.3390/ma15093130 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e3b62a03877d4ea182dc36dfd7de9fae |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1944/15/9/3130 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1944 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 9, p 3130 |
author_variant |
l l ll t z tz x y xy v m vm j m jm x l xl |
---|---|
matchkey_str |
article:19961944:2022----::eoaofspspnmspsprmoltdrudaebislbeuiait |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.3390/ma15093130 doi (DE-627)DOAJ029234786 (DE-599)DOAJe3b62a03877d4ea182dc36dfd7de9fae DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Ling Liu verfasserin aut Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM. insoluble humic acid tourmaline iron ion (Fe<sup<2+</sup<) manganese ion (Mn<sup<2+</sup<) adsorption kinetics isothermal adsorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Tianyi Zhang verfasserin aut Xiaowan Yu verfasserin aut Vitumbiko Mkandawire verfasserin aut Jiadi Ma verfasserin aut Xilin Li verfasserin aut In Materials MDPI AG, 2009 15(2022), 9, p 3130 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:9, p 3130 https://doi.org/10.3390/ma15093130 kostenfrei https://doaj.org/article/e3b62a03877d4ea182dc36dfd7de9fae kostenfrei https://www.mdpi.com/1996-1944/15/9/3130 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 9, p 3130 |
spelling |
10.3390/ma15093130 doi (DE-627)DOAJ029234786 (DE-599)DOAJe3b62a03877d4ea182dc36dfd7de9fae DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Ling Liu verfasserin aut Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM. insoluble humic acid tourmaline iron ion (Fe<sup<2+</sup<) manganese ion (Mn<sup<2+</sup<) adsorption kinetics isothermal adsorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Tianyi Zhang verfasserin aut Xiaowan Yu verfasserin aut Vitumbiko Mkandawire verfasserin aut Jiadi Ma verfasserin aut Xilin Li verfasserin aut In Materials MDPI AG, 2009 15(2022), 9, p 3130 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:9, p 3130 https://doi.org/10.3390/ma15093130 kostenfrei https://doaj.org/article/e3b62a03877d4ea182dc36dfd7de9fae kostenfrei https://www.mdpi.com/1996-1944/15/9/3130 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 9, p 3130 |
allfields_unstemmed |
10.3390/ma15093130 doi (DE-627)DOAJ029234786 (DE-599)DOAJe3b62a03877d4ea182dc36dfd7de9fae DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Ling Liu verfasserin aut Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM. insoluble humic acid tourmaline iron ion (Fe<sup<2+</sup<) manganese ion (Mn<sup<2+</sup<) adsorption kinetics isothermal adsorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Tianyi Zhang verfasserin aut Xiaowan Yu verfasserin aut Vitumbiko Mkandawire verfasserin aut Jiadi Ma verfasserin aut Xilin Li verfasserin aut In Materials MDPI AG, 2009 15(2022), 9, p 3130 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:9, p 3130 https://doi.org/10.3390/ma15093130 kostenfrei https://doaj.org/article/e3b62a03877d4ea182dc36dfd7de9fae kostenfrei https://www.mdpi.com/1996-1944/15/9/3130 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 9, p 3130 |
allfieldsGer |
10.3390/ma15093130 doi (DE-627)DOAJ029234786 (DE-599)DOAJe3b62a03877d4ea182dc36dfd7de9fae DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Ling Liu verfasserin aut Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM. insoluble humic acid tourmaline iron ion (Fe<sup<2+</sup<) manganese ion (Mn<sup<2+</sup<) adsorption kinetics isothermal adsorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Tianyi Zhang verfasserin aut Xiaowan Yu verfasserin aut Vitumbiko Mkandawire verfasserin aut Jiadi Ma verfasserin aut Xilin Li verfasserin aut In Materials MDPI AG, 2009 15(2022), 9, p 3130 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:9, p 3130 https://doi.org/10.3390/ma15093130 kostenfrei https://doaj.org/article/e3b62a03877d4ea182dc36dfd7de9fae kostenfrei https://www.mdpi.com/1996-1944/15/9/3130 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 9, p 3130 |
allfieldsSound |
10.3390/ma15093130 doi (DE-627)DOAJ029234786 (DE-599)DOAJe3b62a03877d4ea182dc36dfd7de9fae DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Ling Liu verfasserin aut Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM. insoluble humic acid tourmaline iron ion (Fe<sup<2+</sup<) manganese ion (Mn<sup<2+</sup<) adsorption kinetics isothermal adsorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Tianyi Zhang verfasserin aut Xiaowan Yu verfasserin aut Vitumbiko Mkandawire verfasserin aut Jiadi Ma verfasserin aut Xilin Li verfasserin aut In Materials MDPI AG, 2009 15(2022), 9, p 3130 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:15 year:2022 number:9, p 3130 https://doi.org/10.3390/ma15093130 kostenfrei https://doaj.org/article/e3b62a03877d4ea182dc36dfd7de9fae kostenfrei https://www.mdpi.com/1996-1944/15/9/3130 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 9, p 3130 |
language |
English |
source |
In Materials 15(2022), 9, p 3130 volume:15 year:2022 number:9, p 3130 |
sourceStr |
In Materials 15(2022), 9, p 3130 volume:15 year:2022 number:9, p 3130 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
insoluble humic acid tourmaline iron ion (Fe<sup<2+</sup<) manganese ion (Mn<sup<2+</sup<) adsorption kinetics isothermal adsorption Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics |
isfreeaccess_bool |
true |
container_title |
Materials |
authorswithroles_txt_mv |
Ling Liu @@aut@@ Tianyi Zhang @@aut@@ Xiaowan Yu @@aut@@ Vitumbiko Mkandawire @@aut@@ Jiadi Ma @@aut@@ Xilin Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
595712649 |
id |
DOAJ029234786 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029234786</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414224940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma15093130</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029234786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe3b62a03877d4ea182dc36dfd7de9fae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ling Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">insoluble humic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tourmaline</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iron ion (Fe<sup<2+</sup<)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">manganese ion (Mn<sup<2+</sup<)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adsorption kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">isothermal adsorption</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianyi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaowan Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vitumbiko Mkandawire</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiadi Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xilin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2022), 9, p 3130</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9, p 3130</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma15093130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e3b62a03877d4ea182dc36dfd7de9fae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/15/9/3130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">9, p 3130</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ling Liu |
spellingShingle |
Ling Liu misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc insoluble humic acid misc tourmaline misc iron ion (Fe<sup<2+</sup<) misc manganese ion (Mn<sup<2+</sup<) misc adsorption kinetics misc isothermal adsorption misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles |
authorStr |
Ling Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)595712649 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
19961944 |
topic_title |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles insoluble humic acid tourmaline iron ion (Fe<sup<2+</sup<) manganese ion (Mn<sup<2+</sup<) adsorption kinetics isothermal adsorption |
topic |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc insoluble humic acid misc tourmaline misc iron ion (Fe<sup<2+</sup<) misc manganese ion (Mn<sup<2+</sup<) misc adsorption kinetics misc isothermal adsorption misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_unstemmed |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc insoluble humic acid misc tourmaline misc iron ion (Fe<sup<2+</sup<) misc manganese ion (Mn<sup<2+</sup<) misc adsorption kinetics misc isothermal adsorption misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_browse |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc insoluble humic acid misc tourmaline misc iron ion (Fe<sup<2+</sup<) misc manganese ion (Mn<sup<2+</sup<) misc adsorption kinetics misc isothermal adsorption misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials |
hierarchy_parent_id |
595712649 |
hierarchy_top_title |
Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)595712649 (DE-600)2487261-1 |
title |
Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles |
ctrlnum |
(DE-627)DOAJ029234786 (DE-599)DOAJe3b62a03877d4ea182dc36dfd7de9fae |
title_full |
Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles |
author_sort |
Ling Liu |
journal |
Materials |
journalStr |
Materials |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ling Liu Tianyi Zhang Xiaowan Yu Vitumbiko Mkandawire Jiadi Ma Xilin Li |
container_volume |
15 |
class |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 |
format_se |
Elektronische Aufsätze |
author-letter |
Ling Liu |
doi_str_mv |
10.3390/ma15093130 |
author2-role |
verfasserin |
title_sort |
removal of fe<sup<2+</sup< and mn<sup<2+</sup< from polluted groundwater by insoluble humic acid/tourmaline composite particles |
callnumber |
TK1-9971 |
title_auth |
Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles |
abstract |
Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM. |
abstractGer |
Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM. |
abstract_unstemmed |
Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 3130 |
title_short |
Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles |
url |
https://doi.org/10.3390/ma15093130 https://doaj.org/article/e3b62a03877d4ea182dc36dfd7de9fae https://www.mdpi.com/1996-1944/15/9/3130 https://doaj.org/toc/1996-1944 |
remote_bool |
true |
author2 |
Tianyi Zhang Xiaowan Yu Vitumbiko Mkandawire Jiadi Ma Xilin Li |
author2Str |
Tianyi Zhang Xiaowan Yu Vitumbiko Mkandawire Jiadi Ma Xilin Li |
ppnlink |
595712649 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ma15093130 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T21:53:17.414Z |
_version_ |
1803596435209322498 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029234786</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414224940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma15093130</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029234786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe3b62a03877d4ea182dc36dfd7de9fae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ling Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Removal of Fe<sup<2+</sup< and Mn<sup<2+</sup< from Polluted Groundwater by Insoluble Humic Acid/Tourmaline Composite Particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA) and carbonizing them at 330 °C to study the removal characteristics and mechanism of Fe<sup<2+</sup< and Mn<sup<2+</sup<. The results showed that the optimal ratio of TM to IHA is 2:3. When the temperature of the IHA/TM composite particles was 35 °C and the pH was 6, the adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< by IHA/TM reached equilibrium at 240 min. The optimum dose of the adsorbent was 10 g/L, and the equilibrium adsorption capacities of Fe<sup<2+</sup< and Mn<sup<2+</sup< were 5.645 mg/g and 3.574 mg/g, respectively. The process of IHA/TM adsorption of Fe<sup<2+</sup< and Mn<sup<2+</sup< in water was spontaneous, endothermic and sustainable, and cooling was not conducive to adsorption. The pseudo-second order kinetic equation can well reflect the adsorption mechanism of IHA/TM on Fe<sup<2+</sup< and Mn<sup<2+</sup<, and the Langmuir adsorption model better describes the isothermal adsorption behaviour. The material characterisation and adsorption experiments indicate that surface coordination and chemical precipitation are the main mechanisms of Fe<sup<2+</sup< and Mn<sup<2+</sup< removal by IHA/TM.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">insoluble humic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tourmaline</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iron ion (Fe<sup<2+</sup<)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">manganese ion (Mn<sup<2+</sup<)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adsorption kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">isothermal adsorption</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianyi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaowan Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vitumbiko Mkandawire</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiadi Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xilin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2022), 9, p 3130</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9, p 3130</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma15093130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e3b62a03877d4ea182dc36dfd7de9fae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/15/9/3130</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">9, p 3130</subfield></datafield></record></collection>
|
score |
7.40199 |