Mycotoxin contamination in feeds and feed materials in China in year 2020
A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalen...
Ausführliche Beschreibung
Autor*in: |
Anping Li [verfasserIn] Wei Hao [verfasserIn] Shu Guan [verfasserIn] Jinyong Wang [verfasserIn] Gang An [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Veterinary Science - Frontiers Media S.A., 2015, 9(2022) |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fvets.2022.1016528 |
---|
Katalog-ID: |
DOAJ02946921X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02946921X | ||
003 | DE-627 | ||
005 | 20230503103704.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fvets.2022.1016528 |2 doi | |
035 | |a (DE-627)DOAJ02946921X | ||
035 | |a (DE-599)DOAJ7d6a3b00853047edbdfe953ad911a5d8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SF600-1100 | |
100 | 0 | |a Anping Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mycotoxin contamination in feeds and feed materials in China in year 2020 |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention. | ||
650 | 4 | |a mycotoxin contamination | |
650 | 4 | |a corn | |
650 | 4 | |a feed | |
650 | 4 | |a China | |
650 | 4 | |a co-contamination | |
653 | 0 | |a Veterinary medicine | |
700 | 0 | |a Wei Hao |e verfasserin |4 aut | |
700 | 0 | |a Shu Guan |e verfasserin |4 aut | |
700 | 0 | |a Jinyong Wang |e verfasserin |4 aut | |
700 | 0 | |a Gang An |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Veterinary Science |d Frontiers Media S.A., 2015 |g 9(2022) |w (DE-627)835029417 |w (DE-600)2834243-4 |x 22971769 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fvets.2022.1016528 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7d6a3b00853047edbdfe953ad911a5d8 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fvets.2022.1016528/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2297-1769 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |
author_variant |
a l al w h wh s g sg j w jw g a ga |
---|---|
matchkey_str |
article:22971769:2022----::yooicnaiainnedadedaeil |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
SF |
publishDate |
2022 |
allfields |
10.3389/fvets.2022.1016528 doi (DE-627)DOAJ02946921X (DE-599)DOAJ7d6a3b00853047edbdfe953ad911a5d8 DE-627 ger DE-627 rakwb eng SF600-1100 Anping Li verfasserin aut Mycotoxin contamination in feeds and feed materials in China in year 2020 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention. mycotoxin contamination corn feed China co-contamination Veterinary medicine Wei Hao verfasserin aut Shu Guan verfasserin aut Jinyong Wang verfasserin aut Gang An verfasserin aut In Frontiers in Veterinary Science Frontiers Media S.A., 2015 9(2022) (DE-627)835029417 (DE-600)2834243-4 22971769 nnns volume:9 year:2022 https://doi.org/10.3389/fvets.2022.1016528 kostenfrei https://doaj.org/article/7d6a3b00853047edbdfe953ad911a5d8 kostenfrei https://www.frontiersin.org/articles/10.3389/fvets.2022.1016528/full kostenfrei https://doaj.org/toc/2297-1769 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
spelling |
10.3389/fvets.2022.1016528 doi (DE-627)DOAJ02946921X (DE-599)DOAJ7d6a3b00853047edbdfe953ad911a5d8 DE-627 ger DE-627 rakwb eng SF600-1100 Anping Li verfasserin aut Mycotoxin contamination in feeds and feed materials in China in year 2020 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention. mycotoxin contamination corn feed China co-contamination Veterinary medicine Wei Hao verfasserin aut Shu Guan verfasserin aut Jinyong Wang verfasserin aut Gang An verfasserin aut In Frontiers in Veterinary Science Frontiers Media S.A., 2015 9(2022) (DE-627)835029417 (DE-600)2834243-4 22971769 nnns volume:9 year:2022 https://doi.org/10.3389/fvets.2022.1016528 kostenfrei https://doaj.org/article/7d6a3b00853047edbdfe953ad911a5d8 kostenfrei https://www.frontiersin.org/articles/10.3389/fvets.2022.1016528/full kostenfrei https://doaj.org/toc/2297-1769 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
allfields_unstemmed |
10.3389/fvets.2022.1016528 doi (DE-627)DOAJ02946921X (DE-599)DOAJ7d6a3b00853047edbdfe953ad911a5d8 DE-627 ger DE-627 rakwb eng SF600-1100 Anping Li verfasserin aut Mycotoxin contamination in feeds and feed materials in China in year 2020 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention. mycotoxin contamination corn feed China co-contamination Veterinary medicine Wei Hao verfasserin aut Shu Guan verfasserin aut Jinyong Wang verfasserin aut Gang An verfasserin aut In Frontiers in Veterinary Science Frontiers Media S.A., 2015 9(2022) (DE-627)835029417 (DE-600)2834243-4 22971769 nnns volume:9 year:2022 https://doi.org/10.3389/fvets.2022.1016528 kostenfrei https://doaj.org/article/7d6a3b00853047edbdfe953ad911a5d8 kostenfrei https://www.frontiersin.org/articles/10.3389/fvets.2022.1016528/full kostenfrei https://doaj.org/toc/2297-1769 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
allfieldsGer |
10.3389/fvets.2022.1016528 doi (DE-627)DOAJ02946921X (DE-599)DOAJ7d6a3b00853047edbdfe953ad911a5d8 DE-627 ger DE-627 rakwb eng SF600-1100 Anping Li verfasserin aut Mycotoxin contamination in feeds and feed materials in China in year 2020 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention. mycotoxin contamination corn feed China co-contamination Veterinary medicine Wei Hao verfasserin aut Shu Guan verfasserin aut Jinyong Wang verfasserin aut Gang An verfasserin aut In Frontiers in Veterinary Science Frontiers Media S.A., 2015 9(2022) (DE-627)835029417 (DE-600)2834243-4 22971769 nnns volume:9 year:2022 https://doi.org/10.3389/fvets.2022.1016528 kostenfrei https://doaj.org/article/7d6a3b00853047edbdfe953ad911a5d8 kostenfrei https://www.frontiersin.org/articles/10.3389/fvets.2022.1016528/full kostenfrei https://doaj.org/toc/2297-1769 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
allfieldsSound |
10.3389/fvets.2022.1016528 doi (DE-627)DOAJ02946921X (DE-599)DOAJ7d6a3b00853047edbdfe953ad911a5d8 DE-627 ger DE-627 rakwb eng SF600-1100 Anping Li verfasserin aut Mycotoxin contamination in feeds and feed materials in China in year 2020 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention. mycotoxin contamination corn feed China co-contamination Veterinary medicine Wei Hao verfasserin aut Shu Guan verfasserin aut Jinyong Wang verfasserin aut Gang An verfasserin aut In Frontiers in Veterinary Science Frontiers Media S.A., 2015 9(2022) (DE-627)835029417 (DE-600)2834243-4 22971769 nnns volume:9 year:2022 https://doi.org/10.3389/fvets.2022.1016528 kostenfrei https://doaj.org/article/7d6a3b00853047edbdfe953ad911a5d8 kostenfrei https://www.frontiersin.org/articles/10.3389/fvets.2022.1016528/full kostenfrei https://doaj.org/toc/2297-1769 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 |
language |
English |
source |
In Frontiers in Veterinary Science 9(2022) volume:9 year:2022 |
sourceStr |
In Frontiers in Veterinary Science 9(2022) volume:9 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
mycotoxin contamination corn feed China co-contamination Veterinary medicine |
isfreeaccess_bool |
true |
container_title |
Frontiers in Veterinary Science |
authorswithroles_txt_mv |
Anping Li @@aut@@ Wei Hao @@aut@@ Shu Guan @@aut@@ Jinyong Wang @@aut@@ Gang An @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
835029417 |
id |
DOAJ02946921X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02946921X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503103704.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fvets.2022.1016528</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02946921X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7d6a3b00853047edbdfe953ad911a5d8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF600-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mycotoxin contamination in feeds and feed materials in China in year 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mycotoxin contamination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">corn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">China</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co-contamination</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Veterinary medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shu Guan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinyong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Veterinary Science</subfield><subfield code="d">Frontiers Media S.A., 2015</subfield><subfield code="g">9(2022)</subfield><subfield code="w">(DE-627)835029417</subfield><subfield code="w">(DE-600)2834243-4</subfield><subfield code="x">22971769</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fvets.2022.1016528</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7d6a3b00853047edbdfe953ad911a5d8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fvets.2022.1016528/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2297-1769</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Anping Li |
spellingShingle |
Anping Li misc SF600-1100 misc mycotoxin contamination misc corn misc feed misc China misc co-contamination misc Veterinary medicine Mycotoxin contamination in feeds and feed materials in China in year 2020 |
authorStr |
Anping Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)835029417 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SF600-1100 |
illustrated |
Not Illustrated |
issn |
22971769 |
topic_title |
SF600-1100 Mycotoxin contamination in feeds and feed materials in China in year 2020 mycotoxin contamination corn feed China co-contamination |
topic |
misc SF600-1100 misc mycotoxin contamination misc corn misc feed misc China misc co-contamination misc Veterinary medicine |
topic_unstemmed |
misc SF600-1100 misc mycotoxin contamination misc corn misc feed misc China misc co-contamination misc Veterinary medicine |
topic_browse |
misc SF600-1100 misc mycotoxin contamination misc corn misc feed misc China misc co-contamination misc Veterinary medicine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Veterinary Science |
hierarchy_parent_id |
835029417 |
hierarchy_top_title |
Frontiers in Veterinary Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)835029417 (DE-600)2834243-4 |
title |
Mycotoxin contamination in feeds and feed materials in China in year 2020 |
ctrlnum |
(DE-627)DOAJ02946921X (DE-599)DOAJ7d6a3b00853047edbdfe953ad911a5d8 |
title_full |
Mycotoxin contamination in feeds and feed materials in China in year 2020 |
author_sort |
Anping Li |
journal |
Frontiers in Veterinary Science |
journalStr |
Frontiers in Veterinary Science |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Anping Li Wei Hao Shu Guan Jinyong Wang Gang An |
container_volume |
9 |
class |
SF600-1100 |
format_se |
Elektronische Aufsätze |
author-letter |
Anping Li |
doi_str_mv |
10.3389/fvets.2022.1016528 |
author2-role |
verfasserin |
title_sort |
mycotoxin contamination in feeds and feed materials in china in year 2020 |
callnumber |
SF600-1100 |
title_auth |
Mycotoxin contamination in feeds and feed materials in China in year 2020 |
abstract |
A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention. |
abstractGer |
A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention. |
abstract_unstemmed |
A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Mycotoxin contamination in feeds and feed materials in China in year 2020 |
url |
https://doi.org/10.3389/fvets.2022.1016528 https://doaj.org/article/7d6a3b00853047edbdfe953ad911a5d8 https://www.frontiersin.org/articles/10.3389/fvets.2022.1016528/full https://doaj.org/toc/2297-1769 |
remote_bool |
true |
author2 |
Wei Hao Shu Guan Jinyong Wang Gang An |
author2Str |
Wei Hao Shu Guan Jinyong Wang Gang An |
ppnlink |
835029417 |
callnumber-subject |
SF - Animal Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fvets.2022.1016528 |
callnumber-a |
SF600-1100 |
up_date |
2024-07-03T23:02:30.762Z |
_version_ |
1803600790306160640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02946921X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503103704.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fvets.2022.1016528</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02946921X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7d6a3b00853047edbdfe953ad911a5d8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF600-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mycotoxin contamination in feeds and feed materials in China in year 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A survey of mycotoxin contamination in feed commodities in China was performed and the regional differences of mycotoxin contamination in new season corn was assessed during January 2020–November 2020 in this research. 1,610 samples were analyzed for the major mycotoxins, namely aflatoxins, zearalenone (ZEN), trichothecenes type B, fumonisins (FUM), fusariotoxin T-2 (T-2) and ochratoxin A (OTA) using methods of liquid chromatography—tandem mass spectrometry and enzyme linked immunosorbent assay. Generally, aflatoxins occurred in 16% of all samples, and ZEN, trichothecenes type B and FUM were more prevalent with positive rates of 47, 72, and 63%, respectively. T2 and OTA were rarely detected. In new season corn, samples were also seriously contaminated with ZEN, trichothecenes type B, and FUM at positive rates of 47, 76, and 79%, respectively, and their averages of positives were 112, 735, and 3,811 μg/kg, respectively. The patterns of mycotoxin occurrence showed distinct regional trends in new season corn samples. Samples from Shandong province were highly contaminated with FUM, while special attention should be paid to aflatoxins in Anhui and Jiangsu provinces of East China. The contents of trichothecenes type B and ZEN from northern to southern provinces showed downward trends. In new season corm, co-occurrence of mycotoxins was widespread, and combinations of ZEN, trichothecenes type B, and FUM were frequently observed in this study. Trichothecenes type B and ZEN concentrations showed a positive correlation coefficient of 0.294, suggesting that toxicological interactions of these toxins deserve attention.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mycotoxin contamination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">corn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">China</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co-contamination</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Veterinary medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shu Guan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinyong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Veterinary Science</subfield><subfield code="d">Frontiers Media S.A., 2015</subfield><subfield code="g">9(2022)</subfield><subfield code="w">(DE-627)835029417</subfield><subfield code="w">(DE-600)2834243-4</subfield><subfield code="x">22971769</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fvets.2022.1016528</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7d6a3b00853047edbdfe953ad911a5d8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fvets.2022.1016528/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2297-1769</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.399728 |