Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis
Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such a...
Ausführliche Beschreibung
Autor*in: |
Hamzah Abu-Sbeih [verfasserIn] Faisal S. Ali [verfasserIn] Wenyi Luo [verfasserIn] Wei Qiao [verfasserIn] Gottumukkala S. Raju [verfasserIn] Yinghong Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal for ImmunoTherapy of Cancer - BMJ Publishing Group, 2013, 6(2018), 1, Seite 11 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; number:1 ; pages:11 |
Links: |
---|
DOI / URN: |
10.1186/s40425-018-0411-1 |
---|
Katalog-ID: |
DOAJ029549248 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029549248 | ||
003 | DE-627 | ||
005 | 20230502072849.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40425-018-0411-1 |2 doi | |
035 | |a (DE-627)DOAJ029549248 | ||
035 | |a (DE-599)DOAJ85b502ad60c148c7b84fade19e98e488 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Hamzah Abu-Sbeih |e verfasserin |4 aut | |
245 | 1 | 0 | |a Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms. | ||
650 | 4 | |a Immune-checkpoint inhibitors | |
650 | 4 | |a Colitis | |
650 | 4 | |a Endoscopy | |
650 | 4 | |a Histology | |
650 | 4 | |a Diarrhea | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Faisal S. Ali |e verfasserin |4 aut | |
700 | 0 | |a Wenyi Luo |e verfasserin |4 aut | |
700 | 0 | |a Wei Qiao |e verfasserin |4 aut | |
700 | 0 | |a Gottumukkala S. Raju |e verfasserin |4 aut | |
700 | 0 | |a Yinghong Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal for ImmunoTherapy of Cancer |d BMJ Publishing Group, 2013 |g 6(2018), 1, Seite 11 |w (DE-627)750086335 |w (DE-600)2719863-7 |x 20511426 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g number:1 |g pages:11 |
856 | 4 | 0 | |u https://doi.org/10.1186/s40425-018-0411-1 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/85b502ad60c148c7b84fade19e98e488 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s40425-018-0411-1 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2051-1426 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |e 1 |h 11 |
author_variant |
h a s has f s a fsa w l wl w q wq g s r gsr y w yw |
---|---|
matchkey_str |
article:20511426:2018----::motnefnocpcnhsooiaeautoiteaaeetfmuehc |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
RC |
publishDate |
2018 |
allfields |
10.1186/s40425-018-0411-1 doi (DE-627)DOAJ029549248 (DE-599)DOAJ85b502ad60c148c7b84fade19e98e488 DE-627 ger DE-627 rakwb eng RC254-282 Hamzah Abu-Sbeih verfasserin aut Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms. Immune-checkpoint inhibitors Colitis Endoscopy Histology Diarrhea Neoplasms. Tumors. Oncology. Including cancer and carcinogens Faisal S. Ali verfasserin aut Wenyi Luo verfasserin aut Wei Qiao verfasserin aut Gottumukkala S. Raju verfasserin aut Yinghong Wang verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 6(2018), 1, Seite 11 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:6 year:2018 number:1 pages:11 https://doi.org/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/article/85b502ad60c148c7b84fade19e98e488 kostenfrei http://link.springer.com/article/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 |
spelling |
10.1186/s40425-018-0411-1 doi (DE-627)DOAJ029549248 (DE-599)DOAJ85b502ad60c148c7b84fade19e98e488 DE-627 ger DE-627 rakwb eng RC254-282 Hamzah Abu-Sbeih verfasserin aut Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms. Immune-checkpoint inhibitors Colitis Endoscopy Histology Diarrhea Neoplasms. Tumors. Oncology. Including cancer and carcinogens Faisal S. Ali verfasserin aut Wenyi Luo verfasserin aut Wei Qiao verfasserin aut Gottumukkala S. Raju verfasserin aut Yinghong Wang verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 6(2018), 1, Seite 11 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:6 year:2018 number:1 pages:11 https://doi.org/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/article/85b502ad60c148c7b84fade19e98e488 kostenfrei http://link.springer.com/article/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 |
allfields_unstemmed |
10.1186/s40425-018-0411-1 doi (DE-627)DOAJ029549248 (DE-599)DOAJ85b502ad60c148c7b84fade19e98e488 DE-627 ger DE-627 rakwb eng RC254-282 Hamzah Abu-Sbeih verfasserin aut Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms. Immune-checkpoint inhibitors Colitis Endoscopy Histology Diarrhea Neoplasms. Tumors. Oncology. Including cancer and carcinogens Faisal S. Ali verfasserin aut Wenyi Luo verfasserin aut Wei Qiao verfasserin aut Gottumukkala S. Raju verfasserin aut Yinghong Wang verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 6(2018), 1, Seite 11 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:6 year:2018 number:1 pages:11 https://doi.org/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/article/85b502ad60c148c7b84fade19e98e488 kostenfrei http://link.springer.com/article/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 |
allfieldsGer |
10.1186/s40425-018-0411-1 doi (DE-627)DOAJ029549248 (DE-599)DOAJ85b502ad60c148c7b84fade19e98e488 DE-627 ger DE-627 rakwb eng RC254-282 Hamzah Abu-Sbeih verfasserin aut Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms. Immune-checkpoint inhibitors Colitis Endoscopy Histology Diarrhea Neoplasms. Tumors. Oncology. Including cancer and carcinogens Faisal S. Ali verfasserin aut Wenyi Luo verfasserin aut Wei Qiao verfasserin aut Gottumukkala S. Raju verfasserin aut Yinghong Wang verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 6(2018), 1, Seite 11 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:6 year:2018 number:1 pages:11 https://doi.org/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/article/85b502ad60c148c7b84fade19e98e488 kostenfrei http://link.springer.com/article/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 |
allfieldsSound |
10.1186/s40425-018-0411-1 doi (DE-627)DOAJ029549248 (DE-599)DOAJ85b502ad60c148c7b84fade19e98e488 DE-627 ger DE-627 rakwb eng RC254-282 Hamzah Abu-Sbeih verfasserin aut Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms. Immune-checkpoint inhibitors Colitis Endoscopy Histology Diarrhea Neoplasms. Tumors. Oncology. Including cancer and carcinogens Faisal S. Ali verfasserin aut Wenyi Luo verfasserin aut Wei Qiao verfasserin aut Gottumukkala S. Raju verfasserin aut Yinghong Wang verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 6(2018), 1, Seite 11 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:6 year:2018 number:1 pages:11 https://doi.org/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/article/85b502ad60c148c7b84fade19e98e488 kostenfrei http://link.springer.com/article/10.1186/s40425-018-0411-1 kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 |
language |
English |
source |
In Journal for ImmunoTherapy of Cancer 6(2018), 1, Seite 11 volume:6 year:2018 number:1 pages:11 |
sourceStr |
In Journal for ImmunoTherapy of Cancer 6(2018), 1, Seite 11 volume:6 year:2018 number:1 pages:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Immune-checkpoint inhibitors Colitis Endoscopy Histology Diarrhea Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Journal for ImmunoTherapy of Cancer |
authorswithroles_txt_mv |
Hamzah Abu-Sbeih @@aut@@ Faisal S. Ali @@aut@@ Wenyi Luo @@aut@@ Wei Qiao @@aut@@ Gottumukkala S. Raju @@aut@@ Yinghong Wang @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
750086335 |
id |
DOAJ029549248 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029549248</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502072849.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40425-018-0411-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029549248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ85b502ad60c148c7b84fade19e98e488</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hamzah Abu-Sbeih</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immune-checkpoint inhibitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colitis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endoscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diarrhea</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Faisal S. Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenyi Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gottumukkala S. Raju</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yinghong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal for ImmunoTherapy of Cancer</subfield><subfield code="d">BMJ Publishing Group, 2013</subfield><subfield code="g">6(2018), 1, Seite 11</subfield><subfield code="w">(DE-627)750086335</subfield><subfield code="w">(DE-600)2719863-7</subfield><subfield code="x">20511426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40425-018-0411-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/85b502ad60c148c7b84fade19e98e488</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s40425-018-0411-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-1426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Hamzah Abu-Sbeih |
spellingShingle |
Hamzah Abu-Sbeih misc RC254-282 misc Immune-checkpoint inhibitors misc Colitis misc Endoscopy misc Histology misc Diarrhea misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis |
authorStr |
Hamzah Abu-Sbeih |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750086335 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
20511426 |
topic_title |
RC254-282 Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis Immune-checkpoint inhibitors Colitis Endoscopy Histology Diarrhea |
topic |
misc RC254-282 misc Immune-checkpoint inhibitors misc Colitis misc Endoscopy misc Histology misc Diarrhea misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc Immune-checkpoint inhibitors misc Colitis misc Endoscopy misc Histology misc Diarrhea misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc Immune-checkpoint inhibitors misc Colitis misc Endoscopy misc Histology misc Diarrhea misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal for ImmunoTherapy of Cancer |
hierarchy_parent_id |
750086335 |
hierarchy_top_title |
Journal for ImmunoTherapy of Cancer |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750086335 (DE-600)2719863-7 |
title |
Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis |
ctrlnum |
(DE-627)DOAJ029549248 (DE-599)DOAJ85b502ad60c148c7b84fade19e98e488 |
title_full |
Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis |
author_sort |
Hamzah Abu-Sbeih |
journal |
Journal for ImmunoTherapy of Cancer |
journalStr |
Journal for ImmunoTherapy of Cancer |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Hamzah Abu-Sbeih Faisal S. Ali Wenyi Luo Wei Qiao Gottumukkala S. Raju Yinghong Wang |
container_volume |
6 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Hamzah Abu-Sbeih |
doi_str_mv |
10.1186/s40425-018-0411-1 |
author2-role |
verfasserin |
title_sort |
importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis |
callnumber |
RC254-282 |
title_auth |
Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis |
abstract |
Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms. |
abstractGer |
Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms. |
abstract_unstemmed |
Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis |
url |
https://doi.org/10.1186/s40425-018-0411-1 https://doaj.org/article/85b502ad60c148c7b84fade19e98e488 http://link.springer.com/article/10.1186/s40425-018-0411-1 https://doaj.org/toc/2051-1426 |
remote_bool |
true |
author2 |
Faisal S. Ali Wenyi Luo Wei Qiao Gottumukkala S. Raju Yinghong Wang |
author2Str |
Faisal S. Ali Wenyi Luo Wei Qiao Gottumukkala S. Raju Yinghong Wang |
ppnlink |
750086335 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40425-018-0411-1 |
callnumber-a |
RC254-282 |
up_date |
2024-07-03T23:24:09.438Z |
_version_ |
1803602152064548864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029549248</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502072849.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40425-018-0411-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029549248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ85b502ad60c148c7b84fade19e98e488</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hamzah Abu-Sbeih</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Immune checkpoint inhibitors (ICPI) are efficacious treatments for advanced malignancies but can result in immune mediated diarrhea and colitis (IDC). Currently, the guidelines for the treatment of IDC depend only on clinical symptoms. Endoscopic and histologic features of such adverse events are not well studied in a manner that can help to gauge treatment plans. We aimed to characterize endoscopic and histologic features of IDC and to assess their association with clinical outcomes. Methods Our study included patients who had undergone endoscopy for IDC (1/2010 to 3/2018). Patients with GI infection at time of onset were excluded. High-risk endoscopic features were ulcers deeper than 2 mm, larger than 1 cm, and extensive colonic involvement. Univariate and multivariate logistic regression were performed to assess the association of endoscopic and histological features with clinical outcomes. Results A total of 182 patients was included; most were white (92%), males (65%) with a mean age of 60 years. Median time from ICPI initiation to IDC was 7 weeks. Fifty-three percent had grade 3–4 diarrhea, and 32% grade 3–4 colitis. Forty-nine patients had mucosal ulcerations, 66 non-ulcerative inflammation and 67 normal endoscopy. Calprotectin was higher in patients with ulceration (P = 0.04). The sensitivity of lactoferrin to detect histologic and endoscopic inflammation was 90% and 70% respectively. Patients who underwent endoscopy earlier than 7 days after IDC onset had shorter duration of IDC symptoms and duration of steroid treatment than those who underwent endoscopy after 7 days of IDC onset (P = 0.026 and P = 0.053, respectively). Patients who underwent endoscopy < 30 days of symptom onset required longer duration of steroids (P = 0.02), had more recurrent symptoms (P < 0.01) and received later infliximab/vedolizumab add-on therapy than did those who underwent endoscopy ≤30 days (P = 0.03). High-risk features were associated with more frequent (P = 0.03) and longer duration (P = 0.02) hospitalization and infliximab/vedolizumab requirement (P < 0.01). Patients with active histological inflammation had more recurrence (P < 0.01) and repeat endoscopy (P < 0.01). Repeat endoscopy was required in 47 patients. A multivariate logistic regression revealed that longer ICPI treatment was associated with more frequent hospitalizations (OR 1.00; 95%CI 1.00–1.01; P < 0.01) and high-risk endoscopic features were associated with the requirement of infliximab/vedolizumab (OR 3.89; 95%CI 1.68–9.01; P < 0.01). Conclusion High risk endoscopic features and active histologic inflammation represent important markers of disease severity with clinical implications and should be used in a timely manner to devise IDC-focused treatment algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immune-checkpoint inhibitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colitis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endoscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diarrhea</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Faisal S. Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenyi Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gottumukkala S. Raju</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yinghong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal for ImmunoTherapy of Cancer</subfield><subfield code="d">BMJ Publishing Group, 2013</subfield><subfield code="g">6(2018), 1, Seite 11</subfield><subfield code="w">(DE-627)750086335</subfield><subfield code="w">(DE-600)2719863-7</subfield><subfield code="x">20511426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40425-018-0411-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/85b502ad60c148c7b84fade19e98e488</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s40425-018-0411-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-1426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
score |
7.4004793 |