Survey of Approaches to Non-Realistic Neural Style Transfer
Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive descript...
Ausführliche Beschreibung
Autor*in: |
Arina Varlamova [verfasserIn] Victor Kitov [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Proceedings of the XXth Conference of Open Innovations Association FRUCT - FRUCT, 2017, 31(2022), 1, Seite 355-362 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2022 ; number:1 ; pages:355-362 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.23919/FRUCT54823.2022.9770893 |
---|
Katalog-ID: |
DOAJ029575257 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029575257 | ||
003 | DE-627 | ||
005 | 20230307135740.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.23919/FRUCT54823.2022.9770893 |2 doi | |
035 | |a (DE-627)DOAJ029575257 | ||
035 | |a (DE-599)DOAJ38a0068f5ce54274a9af0e4e2203f389 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK5101-6720 | |
100 | 0 | |a Arina Varlamova |e verfasserin |4 aut | |
245 | 1 | 0 | |a Survey of Approaches to Non-Realistic Neural Style Transfer |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another. | ||
650 | 4 | |a neural style transfer | |
650 | 4 | |a convolutional neural networks | |
650 | 4 | |a image rendering | |
653 | 0 | |a Telecommunication | |
700 | 0 | |a Victor Kitov |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Proceedings of the XXth Conference of Open Innovations Association FRUCT |d FRUCT, 2017 |g 31(2022), 1, Seite 355-362 |w (DE-627)1760594334 |x 23430737 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2022 |g number:1 |g pages:355-362 |
856 | 4 | 0 | |u https://doi.org/10.23919/FRUCT54823.2022.9770893 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/38a0068f5ce54274a9af0e4e2203f389 |z kostenfrei |
856 | 4 | 0 | |u https://www.fruct.org/publications/fruct31/files/Var.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2305-7254 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2343-0737 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 31 |j 2022 |e 1 |h 355-362 |
author_variant |
a v av v k vk |
---|---|
matchkey_str |
article:23430737:2022----::uvyfprahsooraitcer |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.23919/FRUCT54823.2022.9770893 doi (DE-627)DOAJ029575257 (DE-599)DOAJ38a0068f5ce54274a9af0e4e2203f389 DE-627 ger DE-627 rakwb eng TK5101-6720 Arina Varlamova verfasserin aut Survey of Approaches to Non-Realistic Neural Style Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another. neural style transfer convolutional neural networks image rendering Telecommunication Victor Kitov verfasserin aut In Proceedings of the XXth Conference of Open Innovations Association FRUCT FRUCT, 2017 31(2022), 1, Seite 355-362 (DE-627)1760594334 23430737 nnns volume:31 year:2022 number:1 pages:355-362 https://doi.org/10.23919/FRUCT54823.2022.9770893 kostenfrei https://doaj.org/article/38a0068f5ce54274a9af0e4e2203f389 kostenfrei https://www.fruct.org/publications/fruct31/files/Var.pdf kostenfrei https://doaj.org/toc/2305-7254 Journal toc kostenfrei https://doaj.org/toc/2343-0737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 31 2022 1 355-362 |
spelling |
10.23919/FRUCT54823.2022.9770893 doi (DE-627)DOAJ029575257 (DE-599)DOAJ38a0068f5ce54274a9af0e4e2203f389 DE-627 ger DE-627 rakwb eng TK5101-6720 Arina Varlamova verfasserin aut Survey of Approaches to Non-Realistic Neural Style Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another. neural style transfer convolutional neural networks image rendering Telecommunication Victor Kitov verfasserin aut In Proceedings of the XXth Conference of Open Innovations Association FRUCT FRUCT, 2017 31(2022), 1, Seite 355-362 (DE-627)1760594334 23430737 nnns volume:31 year:2022 number:1 pages:355-362 https://doi.org/10.23919/FRUCT54823.2022.9770893 kostenfrei https://doaj.org/article/38a0068f5ce54274a9af0e4e2203f389 kostenfrei https://www.fruct.org/publications/fruct31/files/Var.pdf kostenfrei https://doaj.org/toc/2305-7254 Journal toc kostenfrei https://doaj.org/toc/2343-0737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 31 2022 1 355-362 |
allfields_unstemmed |
10.23919/FRUCT54823.2022.9770893 doi (DE-627)DOAJ029575257 (DE-599)DOAJ38a0068f5ce54274a9af0e4e2203f389 DE-627 ger DE-627 rakwb eng TK5101-6720 Arina Varlamova verfasserin aut Survey of Approaches to Non-Realistic Neural Style Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another. neural style transfer convolutional neural networks image rendering Telecommunication Victor Kitov verfasserin aut In Proceedings of the XXth Conference of Open Innovations Association FRUCT FRUCT, 2017 31(2022), 1, Seite 355-362 (DE-627)1760594334 23430737 nnns volume:31 year:2022 number:1 pages:355-362 https://doi.org/10.23919/FRUCT54823.2022.9770893 kostenfrei https://doaj.org/article/38a0068f5ce54274a9af0e4e2203f389 kostenfrei https://www.fruct.org/publications/fruct31/files/Var.pdf kostenfrei https://doaj.org/toc/2305-7254 Journal toc kostenfrei https://doaj.org/toc/2343-0737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 31 2022 1 355-362 |
allfieldsGer |
10.23919/FRUCT54823.2022.9770893 doi (DE-627)DOAJ029575257 (DE-599)DOAJ38a0068f5ce54274a9af0e4e2203f389 DE-627 ger DE-627 rakwb eng TK5101-6720 Arina Varlamova verfasserin aut Survey of Approaches to Non-Realistic Neural Style Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another. neural style transfer convolutional neural networks image rendering Telecommunication Victor Kitov verfasserin aut In Proceedings of the XXth Conference of Open Innovations Association FRUCT FRUCT, 2017 31(2022), 1, Seite 355-362 (DE-627)1760594334 23430737 nnns volume:31 year:2022 number:1 pages:355-362 https://doi.org/10.23919/FRUCT54823.2022.9770893 kostenfrei https://doaj.org/article/38a0068f5ce54274a9af0e4e2203f389 kostenfrei https://www.fruct.org/publications/fruct31/files/Var.pdf kostenfrei https://doaj.org/toc/2305-7254 Journal toc kostenfrei https://doaj.org/toc/2343-0737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 31 2022 1 355-362 |
allfieldsSound |
10.23919/FRUCT54823.2022.9770893 doi (DE-627)DOAJ029575257 (DE-599)DOAJ38a0068f5ce54274a9af0e4e2203f389 DE-627 ger DE-627 rakwb eng TK5101-6720 Arina Varlamova verfasserin aut Survey of Approaches to Non-Realistic Neural Style Transfer 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another. neural style transfer convolutional neural networks image rendering Telecommunication Victor Kitov verfasserin aut In Proceedings of the XXth Conference of Open Innovations Association FRUCT FRUCT, 2017 31(2022), 1, Seite 355-362 (DE-627)1760594334 23430737 nnns volume:31 year:2022 number:1 pages:355-362 https://doi.org/10.23919/FRUCT54823.2022.9770893 kostenfrei https://doaj.org/article/38a0068f5ce54274a9af0e4e2203f389 kostenfrei https://www.fruct.org/publications/fruct31/files/Var.pdf kostenfrei https://doaj.org/toc/2305-7254 Journal toc kostenfrei https://doaj.org/toc/2343-0737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 31 2022 1 355-362 |
language |
English |
source |
In Proceedings of the XXth Conference of Open Innovations Association FRUCT 31(2022), 1, Seite 355-362 volume:31 year:2022 number:1 pages:355-362 |
sourceStr |
In Proceedings of the XXth Conference of Open Innovations Association FRUCT 31(2022), 1, Seite 355-362 volume:31 year:2022 number:1 pages:355-362 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
neural style transfer convolutional neural networks image rendering Telecommunication |
isfreeaccess_bool |
true |
container_title |
Proceedings of the XXth Conference of Open Innovations Association FRUCT |
authorswithroles_txt_mv |
Arina Varlamova @@aut@@ Victor Kitov @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1760594334 |
id |
DOAJ029575257 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029575257</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307135740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.23919/FRUCT54823.2022.9770893</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029575257</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ38a0068f5ce54274a9af0e4e2203f389</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5101-6720</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arina Varlamova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Survey of Approaches to Non-Realistic Neural Style Transfer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural style transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image rendering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Telecommunication</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Kitov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Proceedings of the XXth Conference of Open Innovations Association FRUCT</subfield><subfield code="d">FRUCT, 2017</subfield><subfield code="g">31(2022), 1, Seite 355-362</subfield><subfield code="w">(DE-627)1760594334</subfield><subfield code="x">23430737</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:355-362</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.23919/FRUCT54823.2022.9770893</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/38a0068f5ce54274a9af0e4e2203f389</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.fruct.org/publications/fruct31/files/Var.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2305-7254</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2343-0737</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">355-362</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Arina Varlamova |
spellingShingle |
Arina Varlamova misc TK5101-6720 misc neural style transfer misc convolutional neural networks misc image rendering misc Telecommunication Survey of Approaches to Non-Realistic Neural Style Transfer |
authorStr |
Arina Varlamova |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760594334 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK5101-6720 |
illustrated |
Not Illustrated |
issn |
23430737 |
topic_title |
TK5101-6720 Survey of Approaches to Non-Realistic Neural Style Transfer neural style transfer convolutional neural networks image rendering |
topic |
misc TK5101-6720 misc neural style transfer misc convolutional neural networks misc image rendering misc Telecommunication |
topic_unstemmed |
misc TK5101-6720 misc neural style transfer misc convolutional neural networks misc image rendering misc Telecommunication |
topic_browse |
misc TK5101-6720 misc neural style transfer misc convolutional neural networks misc image rendering misc Telecommunication |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Proceedings of the XXth Conference of Open Innovations Association FRUCT |
hierarchy_parent_id |
1760594334 |
hierarchy_top_title |
Proceedings of the XXth Conference of Open Innovations Association FRUCT |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760594334 |
title |
Survey of Approaches to Non-Realistic Neural Style Transfer |
ctrlnum |
(DE-627)DOAJ029575257 (DE-599)DOAJ38a0068f5ce54274a9af0e4e2203f389 |
title_full |
Survey of Approaches to Non-Realistic Neural Style Transfer |
author_sort |
Arina Varlamova |
journal |
Proceedings of the XXth Conference of Open Innovations Association FRUCT |
journalStr |
Proceedings of the XXth Conference of Open Innovations Association FRUCT |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
355 |
author_browse |
Arina Varlamova Victor Kitov |
container_volume |
31 |
class |
TK5101-6720 |
format_se |
Elektronische Aufsätze |
author-letter |
Arina Varlamova |
doi_str_mv |
10.23919/FRUCT54823.2022.9770893 |
author2-role |
verfasserin |
title_sort |
survey of approaches to non-realistic neural style transfer |
callnumber |
TK5101-6720 |
title_auth |
Survey of Approaches to Non-Realistic Neural Style Transfer |
abstract |
Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another. |
abstractGer |
Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another. |
abstract_unstemmed |
Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
1 |
title_short |
Survey of Approaches to Non-Realistic Neural Style Transfer |
url |
https://doi.org/10.23919/FRUCT54823.2022.9770893 https://doaj.org/article/38a0068f5ce54274a9af0e4e2203f389 https://www.fruct.org/publications/fruct31/files/Var.pdf https://doaj.org/toc/2305-7254 https://doaj.org/toc/2343-0737 |
remote_bool |
true |
author2 |
Victor Kitov |
author2Str |
Victor Kitov |
ppnlink |
1760594334 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.23919/FRUCT54823.2022.9770893 |
callnumber-a |
TK5101-6720 |
up_date |
2024-07-03T23:31:02.420Z |
_version_ |
1803602585107562497 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029575257</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307135740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.23919/FRUCT54823.2022.9770893</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029575257</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ38a0068f5ce54274a9af0e4e2203f389</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5101-6720</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arina Varlamova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Survey of Approaches to Non-Realistic Neural Style Transfer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite researchers interest toward style transfer problem, there is still no state-of-the-art method available. Difficulties in problem formalization make a comparison of methods especially complicated. This paper covers twelve widely used algorithms in order to provide their comprehensive description and advantages one other another.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural style transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image rendering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Telecommunication</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Kitov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Proceedings of the XXth Conference of Open Innovations Association FRUCT</subfield><subfield code="d">FRUCT, 2017</subfield><subfield code="g">31(2022), 1, Seite 355-362</subfield><subfield code="w">(DE-627)1760594334</subfield><subfield code="x">23430737</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:355-362</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.23919/FRUCT54823.2022.9770893</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/38a0068f5ce54274a9af0e4e2203f389</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.fruct.org/publications/fruct31/files/Var.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2305-7254</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2343-0737</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">355-362</subfield></datafield></record></collection>
|
score |
7.4017286 |