BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry
Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Mode...
Ausführliche Beschreibung
Autor*in: |
Sebastián Franco [verfasserIn] Xingyang Yu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of High Energy Physics - SpringerOpen, 2016, (2022), 8, Seite 45 |
---|---|
Übergeordnetes Werk: |
year:2022 ; number:8 ; pages:45 |
Links: |
---|
DOI / URN: |
10.1007/JHEP08(2022)277 |
---|
Katalog-ID: |
DOAJ029586593 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029586593 | ||
003 | DE-627 | ||
005 | 20230502102055.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/JHEP08(2022)277 |2 doi | |
035 | |a (DE-627)DOAJ029586593 | ||
035 | |a (DE-599)DOAJ1c07ada2a02f4b88be8affcc555c720a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC770-798 | |
100 | 0 | |a Sebastián Franco |e verfasserin |4 aut | |
245 | 1 | 0 | |a BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. | ||
650 | 4 | |a Brane Dynamics in Gauge Theories | |
650 | 4 | |a D-Branes | |
650 | 4 | |a Supersymmetric Gauge Theory | |
653 | 0 | |a Nuclear and particle physics. Atomic energy. Radioactivity | |
700 | 0 | |a Xingyang Yu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of High Energy Physics |d SpringerOpen, 2016 |g (2022), 8, Seite 45 |w (DE-627)320910571 |w (DE-600)2027350-2 |x 10298479 |7 nnns |
773 | 1 | 8 | |g year:2022 |g number:8 |g pages:45 |
856 | 4 | 0 | |u https://doi.org/10.1007/JHEP08(2022)277 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1c07ada2a02f4b88be8affcc555c720a |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/JHEP08(2022)277 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1029-8479 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2022 |e 8 |h 45 |
author_variant |
s f sf x y xy |
---|---|
matchkey_str |
article:10298479:2022----::f2gnrllso2nahan2hoismnfl |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QC |
publishDate |
2022 |
allfields |
10.1007/JHEP08(2022)277 doi (DE-627)DOAJ029586593 (DE-599)DOAJ1c07ada2a02f4b88be8affcc555c720a DE-627 ger DE-627 rakwb eng QC770-798 Sebastián Franco verfasserin aut BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. Brane Dynamics in Gauge Theories D-Branes Supersymmetric Gauge Theory Nuclear and particle physics. Atomic energy. Radioactivity Xingyang Yu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 45 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:45 https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/article/1c07ada2a02f4b88be8affcc555c720a kostenfrei https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 45 |
spelling |
10.1007/JHEP08(2022)277 doi (DE-627)DOAJ029586593 (DE-599)DOAJ1c07ada2a02f4b88be8affcc555c720a DE-627 ger DE-627 rakwb eng QC770-798 Sebastián Franco verfasserin aut BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. Brane Dynamics in Gauge Theories D-Branes Supersymmetric Gauge Theory Nuclear and particle physics. Atomic energy. Radioactivity Xingyang Yu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 45 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:45 https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/article/1c07ada2a02f4b88be8affcc555c720a kostenfrei https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 45 |
allfields_unstemmed |
10.1007/JHEP08(2022)277 doi (DE-627)DOAJ029586593 (DE-599)DOAJ1c07ada2a02f4b88be8affcc555c720a DE-627 ger DE-627 rakwb eng QC770-798 Sebastián Franco verfasserin aut BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. Brane Dynamics in Gauge Theories D-Branes Supersymmetric Gauge Theory Nuclear and particle physics. Atomic energy. Radioactivity Xingyang Yu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 45 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:45 https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/article/1c07ada2a02f4b88be8affcc555c720a kostenfrei https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 45 |
allfieldsGer |
10.1007/JHEP08(2022)277 doi (DE-627)DOAJ029586593 (DE-599)DOAJ1c07ada2a02f4b88be8affcc555c720a DE-627 ger DE-627 rakwb eng QC770-798 Sebastián Franco verfasserin aut BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. Brane Dynamics in Gauge Theories D-Branes Supersymmetric Gauge Theory Nuclear and particle physics. Atomic energy. Radioactivity Xingyang Yu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 45 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:45 https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/article/1c07ada2a02f4b88be8affcc555c720a kostenfrei https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 45 |
allfieldsSound |
10.1007/JHEP08(2022)277 doi (DE-627)DOAJ029586593 (DE-599)DOAJ1c07ada2a02f4b88be8affcc555c720a DE-627 ger DE-627 rakwb eng QC770-798 Sebastián Franco verfasserin aut BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. Brane Dynamics in Gauge Theories D-Branes Supersymmetric Gauge Theory Nuclear and particle physics. Atomic energy. Radioactivity Xingyang Yu verfasserin aut In Journal of High Energy Physics SpringerOpen, 2016 (2022), 8, Seite 45 (DE-627)320910571 (DE-600)2027350-2 10298479 nnns year:2022 number:8 pages:45 https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/article/1c07ada2a02f4b88be8affcc555c720a kostenfrei https://doi.org/10.1007/JHEP08(2022)277 kostenfrei https://doaj.org/toc/1029-8479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 8 45 |
language |
English |
source |
In Journal of High Energy Physics (2022), 8, Seite 45 year:2022 number:8 pages:45 |
sourceStr |
In Journal of High Energy Physics (2022), 8, Seite 45 year:2022 number:8 pages:45 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Brane Dynamics in Gauge Theories D-Branes Supersymmetric Gauge Theory Nuclear and particle physics. Atomic energy. Radioactivity |
isfreeaccess_bool |
true |
container_title |
Journal of High Energy Physics |
authorswithroles_txt_mv |
Sebastián Franco @@aut@@ Xingyang Yu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320910571 |
id |
DOAJ029586593 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029586593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502102055.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP08(2022)277</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029586593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c07ada2a02f4b88be8affcc555c720a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sebastián Franco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brane Dynamics in Gauge Theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D-Branes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supersymmetric Gauge Theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingyang Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of High Energy Physics</subfield><subfield code="d">SpringerOpen, 2016</subfield><subfield code="g">(2022), 8, Seite 45</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">10298479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP08(2022)277</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c07ada2a02f4b88be8affcc555c720a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP08(2022)277</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-8479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="h">45</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Sebastián Franco |
spellingShingle |
Sebastián Franco misc QC770-798 misc Brane Dynamics in Gauge Theories misc D-Branes misc Supersymmetric Gauge Theory misc Nuclear and particle physics. Atomic energy. Radioactivity BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry |
authorStr |
Sebastián Franco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320910571 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC770-798 |
illustrated |
Not Illustrated |
issn |
10298479 |
topic_title |
QC770-798 BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry Brane Dynamics in Gauge Theories D-Branes Supersymmetric Gauge Theory |
topic |
misc QC770-798 misc Brane Dynamics in Gauge Theories misc D-Branes misc Supersymmetric Gauge Theory misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_unstemmed |
misc QC770-798 misc Brane Dynamics in Gauge Theories misc D-Branes misc Supersymmetric Gauge Theory misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_browse |
misc QC770-798 misc Brane Dynamics in Gauge Theories misc D-Branes misc Supersymmetric Gauge Theory misc Nuclear and particle physics. Atomic energy. Radioactivity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of High Energy Physics |
hierarchy_parent_id |
320910571 |
hierarchy_top_title |
Journal of High Energy Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320910571 (DE-600)2027350-2 |
title |
BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry |
ctrlnum |
(DE-627)DOAJ029586593 (DE-599)DOAJ1c07ada2a02f4b88be8affcc555c720a |
title_full |
BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry |
author_sort |
Sebastián Franco |
journal |
Journal of High Energy Physics |
journalStr |
Journal of High Energy Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
45 |
author_browse |
Sebastián Franco Xingyang Yu |
class |
QC770-798 |
format_se |
Elektronische Aufsätze |
author-letter |
Sebastián Franco |
doi_str_mv |
10.1007/JHEP08(2022)277 |
author2-role |
verfasserin |
title_sort |
bft2: a general class of 2d n $$ \mathcal{n} $$ = (0, 2) theories, 3-manifolds and toric geometry |
callnumber |
QC770-798 |
title_auth |
BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry |
abstract |
Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. |
abstractGer |
Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. |
abstract_unstemmed |
Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8 |
title_short |
BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry |
url |
https://doi.org/10.1007/JHEP08(2022)277 https://doaj.org/article/1c07ada2a02f4b88be8affcc555c720a https://doaj.org/toc/1029-8479 |
remote_bool |
true |
author2 |
Xingyang Yu |
author2Str |
Xingyang Yu |
ppnlink |
320910571 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/JHEP08(2022)277 |
callnumber-a |
QC770-798 |
up_date |
2024-07-03T23:33:39.479Z |
_version_ |
1803602749795860480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029586593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502102055.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP08(2022)277</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029586593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c07ada2a02f4b88be8affcc555c720a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sebastián Franco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">BFT2: a general class of 2d N $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce and initiate the study of a general class of 2d N $$ \mathcal{N} $$ = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT2’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brane Dynamics in Gauge Theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D-Branes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supersymmetric Gauge Theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingyang Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of High Energy Physics</subfield><subfield code="d">SpringerOpen, 2016</subfield><subfield code="g">(2022), 8, Seite 45</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">10298479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP08(2022)277</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c07ada2a02f4b88be8affcc555c720a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/JHEP08(2022)277</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1029-8479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="h">45</subfield></datafield></record></collection>
|
score |
7.4000835 |