A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine
Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium batte...
Ausführliche Beschreibung
Autor*in: |
Yanjun Xiao [verfasserIn] Shuhan Deng [verfasserIn] Furong Han [verfasserIn] Xiaoliang Wang [verfasserIn] Zonghua Zhang [verfasserIn] Kai Peng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 55034-55050 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:55034-55050 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3176900 |
---|
Katalog-ID: |
DOAJ029606470 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029606470 | ||
003 | DE-627 | ||
005 | 20230502102120.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3176900 |2 doi | |
035 | |a (DE-627)DOAJ029606470 | ||
035 | |a (DE-599)DOAJ33f17d5fa2b34fd68e8a93e0781ca9f8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Yanjun Xiao |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance. | ||
650 | 4 | |a Multiform coupling | |
650 | 4 | |a time series forecasting | |
650 | 4 | |a Bayesian LSTM | |
650 | 4 | |a deep fusion predictor | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Shuhan Deng |e verfasserin |4 aut | |
700 | 0 | |a Furong Han |e verfasserin |4 aut | |
700 | 0 | |a Xiaoliang Wang |e verfasserin |4 aut | |
700 | 0 | |a Zonghua Zhang |e verfasserin |4 aut | |
700 | 0 | |a Kai Peng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 55034-55050 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:55034-55050 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3176900 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/33f17d5fa2b34fd68e8a93e0781ca9f8 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9779730/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 55034-55050 |
author_variant |
y x yx s d sd f h fh x w xw z z zz k p kp |
---|---|
matchkey_str |
article:21693536:2022----::mdlaauinoeictikesrdcinehdihutsnofsofr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3176900 doi (DE-627)DOAJ029606470 (DE-599)DOAJ33f17d5fa2b34fd68e8a93e0781ca9f8 DE-627 ger DE-627 rakwb eng TK1-9971 Yanjun Xiao verfasserin aut A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance. Multiform coupling time series forecasting Bayesian LSTM deep fusion predictor Electrical engineering. Electronics. Nuclear engineering Shuhan Deng verfasserin aut Furong Han verfasserin aut Xiaoliang Wang verfasserin aut Zonghua Zhang verfasserin aut Kai Peng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 55034-55050 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:55034-55050 https://doi.org/10.1109/ACCESS.2022.3176900 kostenfrei https://doaj.org/article/33f17d5fa2b34fd68e8a93e0781ca9f8 kostenfrei https://ieeexplore.ieee.org/document/9779730/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 55034-55050 |
spelling |
10.1109/ACCESS.2022.3176900 doi (DE-627)DOAJ029606470 (DE-599)DOAJ33f17d5fa2b34fd68e8a93e0781ca9f8 DE-627 ger DE-627 rakwb eng TK1-9971 Yanjun Xiao verfasserin aut A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance. Multiform coupling time series forecasting Bayesian LSTM deep fusion predictor Electrical engineering. Electronics. Nuclear engineering Shuhan Deng verfasserin aut Furong Han verfasserin aut Xiaoliang Wang verfasserin aut Zonghua Zhang verfasserin aut Kai Peng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 55034-55050 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:55034-55050 https://doi.org/10.1109/ACCESS.2022.3176900 kostenfrei https://doaj.org/article/33f17d5fa2b34fd68e8a93e0781ca9f8 kostenfrei https://ieeexplore.ieee.org/document/9779730/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 55034-55050 |
allfields_unstemmed |
10.1109/ACCESS.2022.3176900 doi (DE-627)DOAJ029606470 (DE-599)DOAJ33f17d5fa2b34fd68e8a93e0781ca9f8 DE-627 ger DE-627 rakwb eng TK1-9971 Yanjun Xiao verfasserin aut A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance. Multiform coupling time series forecasting Bayesian LSTM deep fusion predictor Electrical engineering. Electronics. Nuclear engineering Shuhan Deng verfasserin aut Furong Han verfasserin aut Xiaoliang Wang verfasserin aut Zonghua Zhang verfasserin aut Kai Peng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 55034-55050 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:55034-55050 https://doi.org/10.1109/ACCESS.2022.3176900 kostenfrei https://doaj.org/article/33f17d5fa2b34fd68e8a93e0781ca9f8 kostenfrei https://ieeexplore.ieee.org/document/9779730/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 55034-55050 |
allfieldsGer |
10.1109/ACCESS.2022.3176900 doi (DE-627)DOAJ029606470 (DE-599)DOAJ33f17d5fa2b34fd68e8a93e0781ca9f8 DE-627 ger DE-627 rakwb eng TK1-9971 Yanjun Xiao verfasserin aut A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance. Multiform coupling time series forecasting Bayesian LSTM deep fusion predictor Electrical engineering. Electronics. Nuclear engineering Shuhan Deng verfasserin aut Furong Han verfasserin aut Xiaoliang Wang verfasserin aut Zonghua Zhang verfasserin aut Kai Peng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 55034-55050 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:55034-55050 https://doi.org/10.1109/ACCESS.2022.3176900 kostenfrei https://doaj.org/article/33f17d5fa2b34fd68e8a93e0781ca9f8 kostenfrei https://ieeexplore.ieee.org/document/9779730/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 55034-55050 |
allfieldsSound |
10.1109/ACCESS.2022.3176900 doi (DE-627)DOAJ029606470 (DE-599)DOAJ33f17d5fa2b34fd68e8a93e0781ca9f8 DE-627 ger DE-627 rakwb eng TK1-9971 Yanjun Xiao verfasserin aut A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance. Multiform coupling time series forecasting Bayesian LSTM deep fusion predictor Electrical engineering. Electronics. Nuclear engineering Shuhan Deng verfasserin aut Furong Han verfasserin aut Xiaoliang Wang verfasserin aut Zonghua Zhang verfasserin aut Kai Peng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 55034-55050 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:55034-55050 https://doi.org/10.1109/ACCESS.2022.3176900 kostenfrei https://doaj.org/article/33f17d5fa2b34fd68e8a93e0781ca9f8 kostenfrei https://ieeexplore.ieee.org/document/9779730/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 55034-55050 |
language |
English |
source |
In IEEE Access 10(2022), Seite 55034-55050 volume:10 year:2022 pages:55034-55050 |
sourceStr |
In IEEE Access 10(2022), Seite 55034-55050 volume:10 year:2022 pages:55034-55050 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multiform coupling time series forecasting Bayesian LSTM deep fusion predictor Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Yanjun Xiao @@aut@@ Shuhan Deng @@aut@@ Furong Han @@aut@@ Xiaoliang Wang @@aut@@ Zonghua Zhang @@aut@@ Kai Peng @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ029606470 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029606470</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502102120.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3176900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029606470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ33f17d5fa2b34fd68e8a93e0781ca9f8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yanjun Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiform coupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time series forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian LSTM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep fusion predictor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuhan Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Furong Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoliang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zonghua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 55034-55050</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:55034-55050</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3176900</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/33f17d5fa2b34fd68e8a93e0781ca9f8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9779730/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">55034-55050</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yanjun Xiao |
spellingShingle |
Yanjun Xiao misc TK1-9971 misc Multiform coupling misc time series forecasting misc Bayesian LSTM misc deep fusion predictor misc Electrical engineering. Electronics. Nuclear engineering A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine |
authorStr |
Yanjun Xiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine Multiform coupling time series forecasting Bayesian LSTM deep fusion predictor |
topic |
misc TK1-9971 misc Multiform coupling misc time series forecasting misc Bayesian LSTM misc deep fusion predictor misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Multiform coupling misc time series forecasting misc Bayesian LSTM misc deep fusion predictor misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Multiform coupling misc time series forecasting misc Bayesian LSTM misc deep fusion predictor misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine |
ctrlnum |
(DE-627)DOAJ029606470 (DE-599)DOAJ33f17d5fa2b34fd68e8a93e0781ca9f8 |
title_full |
A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine |
author_sort |
Yanjun Xiao |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
55034 |
author_browse |
Yanjun Xiao Shuhan Deng Furong Han Xiaoliang Wang Zonghua Zhang Kai Peng |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Yanjun Xiao |
doi_str_mv |
10.1109/ACCESS.2022.3176900 |
author2-role |
verfasserin |
title_sort |
model-data-fusion pole piece thickness prediction method with multisensor fusion for lithium battery rolling machine |
callnumber |
TK1-9971 |
title_auth |
A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine |
abstract |
Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance. |
abstractGer |
Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance. |
abstract_unstemmed |
Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine |
url |
https://doi.org/10.1109/ACCESS.2022.3176900 https://doaj.org/article/33f17d5fa2b34fd68e8a93e0781ca9f8 https://ieeexplore.ieee.org/document/9779730/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Shuhan Deng Furong Han Xiaoliang Wang Zonghua Zhang Kai Peng |
author2Str |
Shuhan Deng Furong Han Xiaoliang Wang Zonghua Zhang Kai Peng |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3176900 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T23:38:24.287Z |
_version_ |
1803603048448131072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029606470</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502102120.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3176900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029606470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ33f17d5fa2b34fd68e8a93e0781ca9f8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yanjun Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion for Lithium Battery Rolling Machine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Trend prediction based on sensor data is an important topic in the thickness control system of lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode thickness control system. The increase of control system complexity and data volume does not effectively improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-Term Memory) to achieve dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise, ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode production: Firstly, we establish the underlying physical model of the roll to further obtain the specific parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly, we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system prediction model and solve the problems of slow approximation speed and ease to fall into local minimization of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of data feature self-extraction and model generalization generalizability. Compared with other neural network models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor can effectively model the large measurement data of the thickness control system of lithium battery electrode mills and improve the prediction performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiform coupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time series forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian LSTM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep fusion predictor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuhan Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Furong Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoliang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zonghua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 55034-55050</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:55034-55050</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3176900</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/33f17d5fa2b34fd68e8a93e0781ca9f8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9779730/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">55034-55050</subfield></datafield></record></collection>
|
score |
7.400259 |