What scientific folklore knows about the distances between the most popular distributions
We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial dis...
Ausführliche Beschreibung
Autor*in: |
Kelbert, Mark Yakovlevich [verfasserIn] Suhov, Yurii M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Russisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика - Saratov State University, 2019, 22(2022), 2, Seite 233-240 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:2 ; pages:233-240 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.18500/1816-9791-2022-22-2-233-240 |
---|
Katalog-ID: |
DOAJ029640504 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029640504 | ||
003 | DE-627 | ||
005 | 20230307140038.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.18500/1816-9791-2022-22-2-233-240 |2 doi | |
035 | |a (DE-627)DOAJ029640504 | ||
035 | |a (DE-599)DOAJ487d47f2f7934758aeb660510385c908 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a rus | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Kelbert, Mark Yakovlevich |e verfasserin |4 aut | |
245 | 1 | 0 | |a What scientific folklore knows about the distances between the most popular distributions |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented. | ||
650 | 4 | |a probability distribution | |
650 | 4 | |a variation distance | |
650 | 4 | |a pinsker’s inequality | |
650 | 4 | |a le cam’s inequalities | |
650 | 4 | |a distances between distributions | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Suhov, Yurii M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |d Saratov State University, 2019 |g 22(2022), 2, Seite 233-240 |w (DE-627)1760618233 |x 25419005 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:2 |g pages:233-240 |
856 | 4 | 0 | |u https://doi.org/10.18500/1816-9791-2022-22-2-233-240 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/487d47f2f7934758aeb660510385c908 |z kostenfrei |
856 | 4 | 0 | |u https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/233-240-kelbert-sukhov.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1816-9791 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2541-9005 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 2 |h 233-240 |
author_variant |
m y k my myk y m s ym yms |
---|---|
matchkey_str |
article:25419005:2022----::htcetfcokoenwaothdsacseweteo |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QA |
publishDate |
2022 |
allfields |
10.18500/1816-9791-2022-22-2-233-240 doi (DE-627)DOAJ029640504 (DE-599)DOAJ487d47f2f7934758aeb660510385c908 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut What scientific folklore knows about the distances between the most popular distributions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented. probability distribution variation distance pinsker’s inequality le cam’s inequalities distances between distributions Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 22(2022), 2, Seite 233-240 (DE-627)1760618233 25419005 nnns volume:22 year:2022 number:2 pages:233-240 https://doi.org/10.18500/1816-9791-2022-22-2-233-240 kostenfrei https://doaj.org/article/487d47f2f7934758aeb660510385c908 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/233-240-kelbert-sukhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 22 2022 2 233-240 |
spelling |
10.18500/1816-9791-2022-22-2-233-240 doi (DE-627)DOAJ029640504 (DE-599)DOAJ487d47f2f7934758aeb660510385c908 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut What scientific folklore knows about the distances between the most popular distributions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented. probability distribution variation distance pinsker’s inequality le cam’s inequalities distances between distributions Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 22(2022), 2, Seite 233-240 (DE-627)1760618233 25419005 nnns volume:22 year:2022 number:2 pages:233-240 https://doi.org/10.18500/1816-9791-2022-22-2-233-240 kostenfrei https://doaj.org/article/487d47f2f7934758aeb660510385c908 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/233-240-kelbert-sukhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 22 2022 2 233-240 |
allfields_unstemmed |
10.18500/1816-9791-2022-22-2-233-240 doi (DE-627)DOAJ029640504 (DE-599)DOAJ487d47f2f7934758aeb660510385c908 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut What scientific folklore knows about the distances between the most popular distributions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented. probability distribution variation distance pinsker’s inequality le cam’s inequalities distances between distributions Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 22(2022), 2, Seite 233-240 (DE-627)1760618233 25419005 nnns volume:22 year:2022 number:2 pages:233-240 https://doi.org/10.18500/1816-9791-2022-22-2-233-240 kostenfrei https://doaj.org/article/487d47f2f7934758aeb660510385c908 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/233-240-kelbert-sukhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 22 2022 2 233-240 |
allfieldsGer |
10.18500/1816-9791-2022-22-2-233-240 doi (DE-627)DOAJ029640504 (DE-599)DOAJ487d47f2f7934758aeb660510385c908 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut What scientific folklore knows about the distances between the most popular distributions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented. probability distribution variation distance pinsker’s inequality le cam’s inequalities distances between distributions Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 22(2022), 2, Seite 233-240 (DE-627)1760618233 25419005 nnns volume:22 year:2022 number:2 pages:233-240 https://doi.org/10.18500/1816-9791-2022-22-2-233-240 kostenfrei https://doaj.org/article/487d47f2f7934758aeb660510385c908 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/233-240-kelbert-sukhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 22 2022 2 233-240 |
allfieldsSound |
10.18500/1816-9791-2022-22-2-233-240 doi (DE-627)DOAJ029640504 (DE-599)DOAJ487d47f2f7934758aeb660510385c908 DE-627 ger DE-627 rakwb eng rus QA1-939 Kelbert, Mark Yakovlevich verfasserin aut What scientific folklore knows about the distances between the most popular distributions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented. probability distribution variation distance pinsker’s inequality le cam’s inequalities distances between distributions Mathematics Suhov, Yurii M. verfasserin aut In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика Saratov State University, 2019 22(2022), 2, Seite 233-240 (DE-627)1760618233 25419005 nnns volume:22 year:2022 number:2 pages:233-240 https://doi.org/10.18500/1816-9791-2022-22-2-233-240 kostenfrei https://doaj.org/article/487d47f2f7934758aeb660510385c908 kostenfrei https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/233-240-kelbert-sukhov.pdf kostenfrei https://doaj.org/toc/1816-9791 Journal toc kostenfrei https://doaj.org/toc/2541-9005 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 22 2022 2 233-240 |
language |
English Russian |
source |
In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика 22(2022), 2, Seite 233-240 volume:22 year:2022 number:2 pages:233-240 |
sourceStr |
In Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика 22(2022), 2, Seite 233-240 volume:22 year:2022 number:2 pages:233-240 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
probability distribution variation distance pinsker’s inequality le cam’s inequalities distances between distributions Mathematics |
isfreeaccess_bool |
true |
container_title |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
authorswithroles_txt_mv |
Kelbert, Mark Yakovlevich @@aut@@ Suhov, Yurii M. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1760618233 |
id |
DOAJ029640504 |
language_de |
englisch russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029640504</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307140038.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.18500/1816-9791-2022-22-2-233-240</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029640504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ487d47f2f7934758aeb660510385c908</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kelbert, Mark Yakovlevich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">What scientific folklore knows about the distances between the most popular distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov &ndash; Smirnov distance is also presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variation distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pinsker’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">le cam’s inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distances between distributions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suhov, Yurii M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика</subfield><subfield code="d">Saratov State University, 2019</subfield><subfield code="g">22(2022), 2, Seite 233-240</subfield><subfield code="w">(DE-627)1760618233</subfield><subfield code="x">25419005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:233-240</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.18500/1816-9791-2022-22-2-233-240</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/487d47f2f7934758aeb660510385c908</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/233-240-kelbert-sukhov.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1816-9791</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2541-9005</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">233-240</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Kelbert, Mark Yakovlevich |
spellingShingle |
Kelbert, Mark Yakovlevich misc QA1-939 misc probability distribution misc variation distance misc pinsker’s inequality misc le cam’s inequalities misc distances between distributions misc Mathematics What scientific folklore knows about the distances between the most popular distributions |
authorStr |
Kelbert, Mark Yakovlevich |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760618233 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
25419005 |
topic_title |
QA1-939 What scientific folklore knows about the distances between the most popular distributions probability distribution variation distance pinsker’s inequality le cam’s inequalities distances between distributions |
topic |
misc QA1-939 misc probability distribution misc variation distance misc pinsker’s inequality misc le cam’s inequalities misc distances between distributions misc Mathematics |
topic_unstemmed |
misc QA1-939 misc probability distribution misc variation distance misc pinsker’s inequality misc le cam’s inequalities misc distances between distributions misc Mathematics |
topic_browse |
misc QA1-939 misc probability distribution misc variation distance misc pinsker’s inequality misc le cam’s inequalities misc distances between distributions misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
hierarchy_parent_id |
1760618233 |
hierarchy_top_title |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760618233 |
title |
What scientific folklore knows about the distances between the most popular distributions |
ctrlnum |
(DE-627)DOAJ029640504 (DE-599)DOAJ487d47f2f7934758aeb660510385c908 |
title_full |
What scientific folklore knows about the distances between the most popular distributions |
author_sort |
Kelbert, Mark Yakovlevich |
journal |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
journalStr |
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика |
callnumber-first-code |
Q |
lang_code |
eng rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
233 |
author_browse |
Kelbert, Mark Yakovlevich Suhov, Yurii M. |
container_volume |
22 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Kelbert, Mark Yakovlevich |
doi_str_mv |
10.18500/1816-9791-2022-22-2-233-240 |
author2-role |
verfasserin |
title_sort |
what scientific folklore knows about the distances between the most popular distributions |
callnumber |
QA1-939 |
title_auth |
What scientific folklore knows about the distances between the most popular distributions |
abstract |
We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented. |
abstractGer |
We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented. |
abstract_unstemmed |
We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov – Smirnov distance is also presented. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
2 |
title_short |
What scientific folklore knows about the distances between the most popular distributions |
url |
https://doi.org/10.18500/1816-9791-2022-22-2-233-240 https://doaj.org/article/487d47f2f7934758aeb660510385c908 https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/233-240-kelbert-sukhov.pdf https://doaj.org/toc/1816-9791 https://doaj.org/toc/2541-9005 |
remote_bool |
true |
author2 |
Suhov, Yurii M. |
author2Str |
Suhov, Yurii M. |
ppnlink |
1760618233 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.18500/1816-9791-2022-22-2-233-240 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T23:47:03.311Z |
_version_ |
1803603592674803712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029640504</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307140038.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.18500/1816-9791-2022-22-2-233-240</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029640504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ487d47f2f7934758aeb660510385c908</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kelbert, Mark Yakovlevich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">What scientific folklore knows about the distances between the most popular distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a number of upper and low bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances between one-dimensional Gaussian distributions, between two Poisson distributions, between two binomial distributions, between a binomial and a Poisson distribution, and also between two negative binomial distributions are given. The Kolmogorov &ndash; Smirnov distance is also presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variation distance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pinsker’s inequality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">le cam’s inequalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distances between distributions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suhov, Yurii M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика</subfield><subfield code="d">Saratov State University, 2019</subfield><subfield code="g">22(2022), 2, Seite 233-240</subfield><subfield code="w">(DE-627)1760618233</subfield><subfield code="x">25419005</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:233-240</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.18500/1816-9791-2022-22-2-233-240</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/487d47f2f7934758aeb660510385c908</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2022/05/233-240-kelbert-sukhov.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1816-9791</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2541-9005</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">233-240</subfield></datafield></record></collection>
|
score |
7.401045 |