Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes
It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency....
Ausführliche Beschreibung
Autor*in: |
Kyung-Chan Kim [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Astronomy and Space Sciences - Korean Space Science Society (KSSS), 2012, 39(2022), 1, Seite 11-20 |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2022 ; number:1 ; pages:11-20 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.5140/JASS.2022.39.1.11 |
---|
Katalog-ID: |
DOAJ029730732 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029730732 | ||
003 | DE-627 | ||
005 | 20240413130515.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5140/JASS.2022.39.1.11 |2 doi | |
035 | |a (DE-627)DOAJ029730732 | ||
035 | |a (DE-599)DOAJ0dcab658109342c3a9b2c6b58e5ae232 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB1-991 | |
100 | 0 | |a Kyung-Chan Kim |e verfasserin |4 aut | |
245 | 1 | 0 | |a Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6. | ||
650 | 4 | |a magnetosonic wave | |
650 | 4 | |a equatorial noise | |
650 | 4 | |a empirical model | |
650 | 4 | |a ambient plasma environment | |
650 | 4 | |a van allen probes | |
653 | 0 | |a Astronomy | |
773 | 0 | 8 | |i In |t Journal of Astronomy and Space Sciences |d Korean Space Science Society (KSSS), 2012 |g 39(2022), 1, Seite 11-20 |w (DE-627)62761471X |w (DE-600)2557343-3 |x 20931409 |7 nnns |
773 | 1 | 8 | |g volume:39 |g year:2022 |g number:1 |g pages:11-20 |
856 | 4 | 0 | |u https://doi.org/10.5140/JASS.2022.39.1.11 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0dcab658109342c3a9b2c6b58e5ae232 |z kostenfrei |
856 | 4 | 0 | |u http://koreascience.or.kr/article/JAKO202207638861802.page |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2093-5587 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2093-1409 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 39 |j 2022 |e 1 |h 11-20 |
author_variant |
k c k kck |
---|---|
matchkey_str |
article:20931409:2022----::miiamdlnotelblitiuinfantsncaewtabetlsan |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QB |
publishDate |
2022 |
allfields |
10.5140/JASS.2022.39.1.11 doi (DE-627)DOAJ029730732 (DE-599)DOAJ0dcab658109342c3a9b2c6b58e5ae232 DE-627 ger DE-627 rakwb eng QB1-991 Kyung-Chan Kim verfasserin aut Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6. magnetosonic wave equatorial noise empirical model ambient plasma environment van allen probes Astronomy In Journal of Astronomy and Space Sciences Korean Space Science Society (KSSS), 2012 39(2022), 1, Seite 11-20 (DE-627)62761471X (DE-600)2557343-3 20931409 nnns volume:39 year:2022 number:1 pages:11-20 https://doi.org/10.5140/JASS.2022.39.1.11 kostenfrei https://doaj.org/article/0dcab658109342c3a9b2c6b58e5ae232 kostenfrei http://koreascience.or.kr/article/JAKO202207638861802.page kostenfrei https://doaj.org/toc/2093-5587 Journal toc kostenfrei https://doaj.org/toc/2093-1409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 39 2022 1 11-20 |
spelling |
10.5140/JASS.2022.39.1.11 doi (DE-627)DOAJ029730732 (DE-599)DOAJ0dcab658109342c3a9b2c6b58e5ae232 DE-627 ger DE-627 rakwb eng QB1-991 Kyung-Chan Kim verfasserin aut Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6. magnetosonic wave equatorial noise empirical model ambient plasma environment van allen probes Astronomy In Journal of Astronomy and Space Sciences Korean Space Science Society (KSSS), 2012 39(2022), 1, Seite 11-20 (DE-627)62761471X (DE-600)2557343-3 20931409 nnns volume:39 year:2022 number:1 pages:11-20 https://doi.org/10.5140/JASS.2022.39.1.11 kostenfrei https://doaj.org/article/0dcab658109342c3a9b2c6b58e5ae232 kostenfrei http://koreascience.or.kr/article/JAKO202207638861802.page kostenfrei https://doaj.org/toc/2093-5587 Journal toc kostenfrei https://doaj.org/toc/2093-1409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 39 2022 1 11-20 |
allfields_unstemmed |
10.5140/JASS.2022.39.1.11 doi (DE-627)DOAJ029730732 (DE-599)DOAJ0dcab658109342c3a9b2c6b58e5ae232 DE-627 ger DE-627 rakwb eng QB1-991 Kyung-Chan Kim verfasserin aut Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6. magnetosonic wave equatorial noise empirical model ambient plasma environment van allen probes Astronomy In Journal of Astronomy and Space Sciences Korean Space Science Society (KSSS), 2012 39(2022), 1, Seite 11-20 (DE-627)62761471X (DE-600)2557343-3 20931409 nnns volume:39 year:2022 number:1 pages:11-20 https://doi.org/10.5140/JASS.2022.39.1.11 kostenfrei https://doaj.org/article/0dcab658109342c3a9b2c6b58e5ae232 kostenfrei http://koreascience.or.kr/article/JAKO202207638861802.page kostenfrei https://doaj.org/toc/2093-5587 Journal toc kostenfrei https://doaj.org/toc/2093-1409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 39 2022 1 11-20 |
allfieldsGer |
10.5140/JASS.2022.39.1.11 doi (DE-627)DOAJ029730732 (DE-599)DOAJ0dcab658109342c3a9b2c6b58e5ae232 DE-627 ger DE-627 rakwb eng QB1-991 Kyung-Chan Kim verfasserin aut Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6. magnetosonic wave equatorial noise empirical model ambient plasma environment van allen probes Astronomy In Journal of Astronomy and Space Sciences Korean Space Science Society (KSSS), 2012 39(2022), 1, Seite 11-20 (DE-627)62761471X (DE-600)2557343-3 20931409 nnns volume:39 year:2022 number:1 pages:11-20 https://doi.org/10.5140/JASS.2022.39.1.11 kostenfrei https://doaj.org/article/0dcab658109342c3a9b2c6b58e5ae232 kostenfrei http://koreascience.or.kr/article/JAKO202207638861802.page kostenfrei https://doaj.org/toc/2093-5587 Journal toc kostenfrei https://doaj.org/toc/2093-1409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 39 2022 1 11-20 |
allfieldsSound |
10.5140/JASS.2022.39.1.11 doi (DE-627)DOAJ029730732 (DE-599)DOAJ0dcab658109342c3a9b2c6b58e5ae232 DE-627 ger DE-627 rakwb eng QB1-991 Kyung-Chan Kim verfasserin aut Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6. magnetosonic wave equatorial noise empirical model ambient plasma environment van allen probes Astronomy In Journal of Astronomy and Space Sciences Korean Space Science Society (KSSS), 2012 39(2022), 1, Seite 11-20 (DE-627)62761471X (DE-600)2557343-3 20931409 nnns volume:39 year:2022 number:1 pages:11-20 https://doi.org/10.5140/JASS.2022.39.1.11 kostenfrei https://doaj.org/article/0dcab658109342c3a9b2c6b58e5ae232 kostenfrei http://koreascience.or.kr/article/JAKO202207638861802.page kostenfrei https://doaj.org/toc/2093-5587 Journal toc kostenfrei https://doaj.org/toc/2093-1409 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 39 2022 1 11-20 |
language |
English |
source |
In Journal of Astronomy and Space Sciences 39(2022), 1, Seite 11-20 volume:39 year:2022 number:1 pages:11-20 |
sourceStr |
In Journal of Astronomy and Space Sciences 39(2022), 1, Seite 11-20 volume:39 year:2022 number:1 pages:11-20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
magnetosonic wave equatorial noise empirical model ambient plasma environment van allen probes Astronomy |
isfreeaccess_bool |
true |
container_title |
Journal of Astronomy and Space Sciences |
authorswithroles_txt_mv |
Kyung-Chan Kim @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
62761471X |
id |
DOAJ029730732 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029730732</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413130515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5140/JASS.2022.39.1.11</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029730732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0dcab658109342c3a9b2c6b58e5ae232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB1-991</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kyung-Chan Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetosonic wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equatorial noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">empirical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ambient plasma environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">van allen probes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astronomy</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Astronomy and Space Sciences</subfield><subfield code="d">Korean Space Science Society (KSSS), 2012</subfield><subfield code="g">39(2022), 1, Seite 11-20</subfield><subfield code="w">(DE-627)62761471X</subfield><subfield code="w">(DE-600)2557343-3</subfield><subfield code="x">20931409</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11-20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5140/JASS.2022.39.1.11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0dcab658109342c3a9b2c6b58e5ae232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://koreascience.or.kr/article/JAKO202207638861802.page</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2093-5587</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2093-1409</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">11-20</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Kyung-Chan Kim |
spellingShingle |
Kyung-Chan Kim misc QB1-991 misc magnetosonic wave misc equatorial noise misc empirical model misc ambient plasma environment misc van allen probes misc Astronomy Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes |
authorStr |
Kyung-Chan Kim |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)62761471X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB1-991 |
illustrated |
Not Illustrated |
issn |
20931409 |
topic_title |
QB1-991 Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes magnetosonic wave equatorial noise empirical model ambient plasma environment van allen probes |
topic |
misc QB1-991 misc magnetosonic wave misc equatorial noise misc empirical model misc ambient plasma environment misc van allen probes misc Astronomy |
topic_unstemmed |
misc QB1-991 misc magnetosonic wave misc equatorial noise misc empirical model misc ambient plasma environment misc van allen probes misc Astronomy |
topic_browse |
misc QB1-991 misc magnetosonic wave misc equatorial noise misc empirical model misc ambient plasma environment misc van allen probes misc Astronomy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Astronomy and Space Sciences |
hierarchy_parent_id |
62761471X |
hierarchy_top_title |
Journal of Astronomy and Space Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)62761471X (DE-600)2557343-3 |
title |
Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes |
ctrlnum |
(DE-627)DOAJ029730732 (DE-599)DOAJ0dcab658109342c3a9b2c6b58e5ae232 |
title_full |
Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes |
author_sort |
Kyung-Chan Kim |
journal |
Journal of Astronomy and Space Sciences |
journalStr |
Journal of Astronomy and Space Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Kyung-Chan Kim |
container_volume |
39 |
class |
QB1-991 |
format_se |
Elektronische Aufsätze |
author-letter |
Kyung-Chan Kim |
doi_str_mv |
10.5140/JASS.2022.39.1.11 |
title_sort |
empirical modeling of the global distribution of magnetosonic waves with ambient plasma environment using van allen probes |
callnumber |
QB1-991 |
title_auth |
Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes |
abstract |
It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6. |
abstractGer |
It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6. |
abstract_unstemmed |
It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes |
url |
https://doi.org/10.5140/JASS.2022.39.1.11 https://doaj.org/article/0dcab658109342c3a9b2c6b58e5ae232 http://koreascience.or.kr/article/JAKO202207638861802.page https://doaj.org/toc/2093-5587 https://doaj.org/toc/2093-1409 |
remote_bool |
true |
ppnlink |
62761471X |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5140/JASS.2022.39.1.11 |
callnumber-a |
QB1-991 |
up_date |
2024-07-04T00:10:04.298Z |
_version_ |
1803605040748822528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029730732</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413130515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5140/JASS.2022.39.1.11</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029730732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0dcab658109342c3a9b2c6b58e5ae232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB1-991</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kyung-Chan Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth’s magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012–2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment—defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)—without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of < 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetosonic wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equatorial noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">empirical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ambient plasma environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">van allen probes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astronomy</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Astronomy and Space Sciences</subfield><subfield code="d">Korean Space Science Society (KSSS), 2012</subfield><subfield code="g">39(2022), 1, Seite 11-20</subfield><subfield code="w">(DE-627)62761471X</subfield><subfield code="w">(DE-600)2557343-3</subfield><subfield code="x">20931409</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11-20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5140/JASS.2022.39.1.11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0dcab658109342c3a9b2c6b58e5ae232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://koreascience.or.kr/article/JAKO202207638861802.page</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2093-5587</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2093-1409</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">11-20</subfield></datafield></record></collection>
|
score |
7.402237 |