A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy
Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (...
Ausführliche Beschreibung
Autor*in: |
Yun Liang [verfasserIn] Yuanwu Cao [verfasserIn] Zhiguo Gong [verfasserIn] Chang Jiang [verfasserIn] Lixia Jin [verfasserIn] Zheng Li [verfasserIn] Zixian Chen [verfasserIn] Chun Jiang [verfasserIn] Xiaoxing Jiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Orthopaedic Surgery and Research - BMC, 2006, 15(2020), 1, Seite 8 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2020 ; number:1 ; pages:8 |
Links: |
---|
DOI / URN: |
10.1186/s13018-020-01833-0 |
---|
Katalog-ID: |
DOAJ029749239 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029749239 | ||
003 | DE-627 | ||
005 | 20230503063005.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13018-020-01833-0 |2 doi | |
035 | |a (DE-627)DOAJ029749239 | ||
035 | |a (DE-599)DOAJe2244ccb7fa548b78799637514256852 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RD701-811 | |
050 | 0 | |a RC925-935 | |
100 | 0 | |a Yun Liang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability. | ||
650 | 4 | |a Thoracic vertebra | |
650 | 4 | |a Thoracic cage | |
650 | 4 | |a TES | |
650 | 4 | |a Spinal stability | |
650 | 4 | |a Finite element analysis | |
653 | 0 | |a Orthopedic surgery | |
653 | 0 | |a Diseases of the musculoskeletal system | |
700 | 0 | |a Yuanwu Cao |e verfasserin |4 aut | |
700 | 0 | |a Zhiguo Gong |e verfasserin |4 aut | |
700 | 0 | |a Chang Jiang |e verfasserin |4 aut | |
700 | 0 | |a Lixia Jin |e verfasserin |4 aut | |
700 | 0 | |a Zheng Li |e verfasserin |4 aut | |
700 | 0 | |a Zixian Chen |e verfasserin |4 aut | |
700 | 0 | |a Chun Jiang |e verfasserin |4 aut | |
700 | 0 | |a Xiaoxing Jiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Orthopaedic Surgery and Research |d BMC, 2006 |g 15(2020), 1, Seite 8 |w (DE-627)518346145 |w (DE-600)2252548-8 |x 1749799X |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2020 |g number:1 |g pages:8 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13018-020-01833-0 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e2244ccb7fa548b78799637514256852 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s13018-020-01833-0 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1749-799X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2020 |e 1 |h 8 |
author_variant |
y l yl y c yc z g zg c j cj l j lj z l zl z c zc c j cj x j xj |
---|---|
matchkey_str |
article:1749799X:2020----::fnteeetnlssnoprntetbltodfeetotrofxtomtosot |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
RD |
publishDate |
2020 |
allfields |
10.1186/s13018-020-01833-0 doi (DE-627)DOAJ029749239 (DE-599)DOAJe2244ccb7fa548b78799637514256852 DE-627 ger DE-627 rakwb eng RD701-811 RC925-935 Yun Liang verfasserin aut A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability. Thoracic vertebra Thoracic cage TES Spinal stability Finite element analysis Orthopedic surgery Diseases of the musculoskeletal system Yuanwu Cao verfasserin aut Zhiguo Gong verfasserin aut Chang Jiang verfasserin aut Lixia Jin verfasserin aut Zheng Li verfasserin aut Zixian Chen verfasserin aut Chun Jiang verfasserin aut Xiaoxing Jiang verfasserin aut In Journal of Orthopaedic Surgery and Research BMC, 2006 15(2020), 1, Seite 8 (DE-627)518346145 (DE-600)2252548-8 1749799X nnns volume:15 year:2020 number:1 pages:8 https://doi.org/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/article/e2244ccb7fa548b78799637514256852 kostenfrei http://link.springer.com/article/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/toc/1749-799X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 1 8 |
spelling |
10.1186/s13018-020-01833-0 doi (DE-627)DOAJ029749239 (DE-599)DOAJe2244ccb7fa548b78799637514256852 DE-627 ger DE-627 rakwb eng RD701-811 RC925-935 Yun Liang verfasserin aut A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability. Thoracic vertebra Thoracic cage TES Spinal stability Finite element analysis Orthopedic surgery Diseases of the musculoskeletal system Yuanwu Cao verfasserin aut Zhiguo Gong verfasserin aut Chang Jiang verfasserin aut Lixia Jin verfasserin aut Zheng Li verfasserin aut Zixian Chen verfasserin aut Chun Jiang verfasserin aut Xiaoxing Jiang verfasserin aut In Journal of Orthopaedic Surgery and Research BMC, 2006 15(2020), 1, Seite 8 (DE-627)518346145 (DE-600)2252548-8 1749799X nnns volume:15 year:2020 number:1 pages:8 https://doi.org/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/article/e2244ccb7fa548b78799637514256852 kostenfrei http://link.springer.com/article/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/toc/1749-799X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 1 8 |
allfields_unstemmed |
10.1186/s13018-020-01833-0 doi (DE-627)DOAJ029749239 (DE-599)DOAJe2244ccb7fa548b78799637514256852 DE-627 ger DE-627 rakwb eng RD701-811 RC925-935 Yun Liang verfasserin aut A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability. Thoracic vertebra Thoracic cage TES Spinal stability Finite element analysis Orthopedic surgery Diseases of the musculoskeletal system Yuanwu Cao verfasserin aut Zhiguo Gong verfasserin aut Chang Jiang verfasserin aut Lixia Jin verfasserin aut Zheng Li verfasserin aut Zixian Chen verfasserin aut Chun Jiang verfasserin aut Xiaoxing Jiang verfasserin aut In Journal of Orthopaedic Surgery and Research BMC, 2006 15(2020), 1, Seite 8 (DE-627)518346145 (DE-600)2252548-8 1749799X nnns volume:15 year:2020 number:1 pages:8 https://doi.org/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/article/e2244ccb7fa548b78799637514256852 kostenfrei http://link.springer.com/article/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/toc/1749-799X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 1 8 |
allfieldsGer |
10.1186/s13018-020-01833-0 doi (DE-627)DOAJ029749239 (DE-599)DOAJe2244ccb7fa548b78799637514256852 DE-627 ger DE-627 rakwb eng RD701-811 RC925-935 Yun Liang verfasserin aut A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability. Thoracic vertebra Thoracic cage TES Spinal stability Finite element analysis Orthopedic surgery Diseases of the musculoskeletal system Yuanwu Cao verfasserin aut Zhiguo Gong verfasserin aut Chang Jiang verfasserin aut Lixia Jin verfasserin aut Zheng Li verfasserin aut Zixian Chen verfasserin aut Chun Jiang verfasserin aut Xiaoxing Jiang verfasserin aut In Journal of Orthopaedic Surgery and Research BMC, 2006 15(2020), 1, Seite 8 (DE-627)518346145 (DE-600)2252548-8 1749799X nnns volume:15 year:2020 number:1 pages:8 https://doi.org/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/article/e2244ccb7fa548b78799637514256852 kostenfrei http://link.springer.com/article/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/toc/1749-799X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 1 8 |
allfieldsSound |
10.1186/s13018-020-01833-0 doi (DE-627)DOAJ029749239 (DE-599)DOAJe2244ccb7fa548b78799637514256852 DE-627 ger DE-627 rakwb eng RD701-811 RC925-935 Yun Liang verfasserin aut A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability. Thoracic vertebra Thoracic cage TES Spinal stability Finite element analysis Orthopedic surgery Diseases of the musculoskeletal system Yuanwu Cao verfasserin aut Zhiguo Gong verfasserin aut Chang Jiang verfasserin aut Lixia Jin verfasserin aut Zheng Li verfasserin aut Zixian Chen verfasserin aut Chun Jiang verfasserin aut Xiaoxing Jiang verfasserin aut In Journal of Orthopaedic Surgery and Research BMC, 2006 15(2020), 1, Seite 8 (DE-627)518346145 (DE-600)2252548-8 1749799X nnns volume:15 year:2020 number:1 pages:8 https://doi.org/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/article/e2244ccb7fa548b78799637514256852 kostenfrei http://link.springer.com/article/10.1186/s13018-020-01833-0 kostenfrei https://doaj.org/toc/1749-799X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2020 1 8 |
language |
English |
source |
In Journal of Orthopaedic Surgery and Research 15(2020), 1, Seite 8 volume:15 year:2020 number:1 pages:8 |
sourceStr |
In Journal of Orthopaedic Surgery and Research 15(2020), 1, Seite 8 volume:15 year:2020 number:1 pages:8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thoracic vertebra Thoracic cage TES Spinal stability Finite element analysis Orthopedic surgery Diseases of the musculoskeletal system |
isfreeaccess_bool |
true |
container_title |
Journal of Orthopaedic Surgery and Research |
authorswithroles_txt_mv |
Yun Liang @@aut@@ Yuanwu Cao @@aut@@ Zhiguo Gong @@aut@@ Chang Jiang @@aut@@ Lixia Jin @@aut@@ Zheng Li @@aut@@ Zixian Chen @@aut@@ Chun Jiang @@aut@@ Xiaoxing Jiang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
518346145 |
id |
DOAJ029749239 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029749239</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13018-020-01833-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029749239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe2244ccb7fa548b78799637514256852</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RD701-811</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC925-935</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yun Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic vertebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic cage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TES</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spinal stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Orthopedic surgery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the musculoskeletal system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanwu Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguo Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chang Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lixia Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zixian Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxing Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Orthopaedic Surgery and Research</subfield><subfield code="d">BMC, 2006</subfield><subfield code="g">15(2020), 1, Seite 8</subfield><subfield code="w">(DE-627)518346145</subfield><subfield code="w">(DE-600)2252548-8</subfield><subfield code="x">1749799X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13018-020-01833-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e2244ccb7fa548b78799637514256852</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13018-020-01833-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1749-799X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">8</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Yun Liang |
spellingShingle |
Yun Liang misc RD701-811 misc RC925-935 misc Thoracic vertebra misc Thoracic cage misc TES misc Spinal stability misc Finite element analysis misc Orthopedic surgery misc Diseases of the musculoskeletal system A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy |
authorStr |
Yun Liang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)518346145 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RD701-811 |
illustrated |
Not Illustrated |
issn |
1749799X |
topic_title |
RD701-811 RC925-935 A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy Thoracic vertebra Thoracic cage TES Spinal stability Finite element analysis |
topic |
misc RD701-811 misc RC925-935 misc Thoracic vertebra misc Thoracic cage misc TES misc Spinal stability misc Finite element analysis misc Orthopedic surgery misc Diseases of the musculoskeletal system |
topic_unstemmed |
misc RD701-811 misc RC925-935 misc Thoracic vertebra misc Thoracic cage misc TES misc Spinal stability misc Finite element analysis misc Orthopedic surgery misc Diseases of the musculoskeletal system |
topic_browse |
misc RD701-811 misc RC925-935 misc Thoracic vertebra misc Thoracic cage misc TES misc Spinal stability misc Finite element analysis misc Orthopedic surgery misc Diseases of the musculoskeletal system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Orthopaedic Surgery and Research |
hierarchy_parent_id |
518346145 |
hierarchy_top_title |
Journal of Orthopaedic Surgery and Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)518346145 (DE-600)2252548-8 |
title |
A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy |
ctrlnum |
(DE-627)DOAJ029749239 (DE-599)DOAJe2244ccb7fa548b78799637514256852 |
title_full |
A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy |
author_sort |
Yun Liang |
journal |
Journal of Orthopaedic Surgery and Research |
journalStr |
Journal of Orthopaedic Surgery and Research |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
8 |
author_browse |
Yun Liang Yuanwu Cao Zhiguo Gong Chang Jiang Lixia Jin Zheng Li Zixian Chen Chun Jiang Xiaoxing Jiang |
container_volume |
15 |
class |
RD701-811 RC925-935 |
format_se |
Elektronische Aufsätze |
author-letter |
Yun Liang |
doi_str_mv |
10.1186/s13018-020-01833-0 |
author2-role |
verfasserin |
title_sort |
finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy |
callnumber |
RD701-811 |
title_auth |
A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy |
abstract |
Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability. |
abstractGer |
Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability. |
abstract_unstemmed |
Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy |
url |
https://doi.org/10.1186/s13018-020-01833-0 https://doaj.org/article/e2244ccb7fa548b78799637514256852 http://link.springer.com/article/10.1186/s13018-020-01833-0 https://doaj.org/toc/1749-799X |
remote_bool |
true |
author2 |
Yuanwu Cao Zhiguo Gong Chang Jiang Lixia Jin Zheng Li Zixian Chen Chun Jiang Xiaoxing Jiang |
author2Str |
Yuanwu Cao Zhiguo Gong Chang Jiang Lixia Jin Zheng Li Zixian Chen Chun Jiang Xiaoxing Jiang |
ppnlink |
518346145 |
callnumber-subject |
RD - Surgery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13018-020-01833-0 |
callnumber-a |
RD701-811 |
up_date |
2024-07-04T00:14:27.847Z |
_version_ |
1803605317096833024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029749239</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063005.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13018-020-01833-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029749239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe2244ccb7fa548b78799637514256852</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RD701-811</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC925-935</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yun Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A finite element analysis on comparing the stability of different posterior fixation methods for thoracic total en bloc spondylectomy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Objective To compare the spinal stability with different fixation methods after thoracic TES using finite element analysis Methods The spinal finite element model was established from a healthy volunteer, and the validity was verified. The models of T8 thoracic total en bloc spondylectomy (TES) with and without artificial vertebral body were established combination with different fixation methods: the first was long segment fixation with fixed segments T5–7, T9–11; the second was short segment fixation with fixed segments T6–7, T9–10; the third was modified short segment with a pair of vertebral body screws on T7 and T9 added on the basis of short segment fixation. The motions of each model in standing state were simulated in software. The range of motion (ROM) and internal fixation stress changes were analyzed. Results When anterior support was effective, the three fixation methods could effectively maintain the stability of the spine. However, when anterior support failed, the ROM of the long segment fixation group and the short segment fixation group in the flexion-extension directions was significantly higher than that of when the anterior support existed, while the modified short segment fixation group had no significant changes. Meanwhile, the stress of internal fixation in the long segment fixation group and the short segment fixation group were greatly increased. However, there were no significant changes in modified short segment fixation group. Conclusion After TES, the presence of the thoracic cage gives partial anterior stabilization. When the anterior support failed, the modified short segment fixation method can provide better stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic vertebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic cage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TES</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spinal stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Orthopedic surgery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the musculoskeletal system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanwu Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguo Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chang Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lixia Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zixian Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chun Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoxing Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Orthopaedic Surgery and Research</subfield><subfield code="d">BMC, 2006</subfield><subfield code="g">15(2020), 1, Seite 8</subfield><subfield code="w">(DE-627)518346145</subfield><subfield code="w">(DE-600)2252548-8</subfield><subfield code="x">1749799X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13018-020-01833-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e2244ccb7fa548b78799637514256852</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13018-020-01833-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1749-799X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">8</subfield></datafield></record></collection>
|
score |
7.401374 |