Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS
A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP...
Ausführliche Beschreibung
Autor*in: |
Lindomar A. Portugal [verfasserIn] Edwin Palacio [verfasserIn] Víctor Cerdà [verfasserIn] Joao H. Santos-Neto [verfasserIn] Laura Ferrer [verfasserIn] Sergio L. C. Ferreira [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Chemosensors - MDPI AG, 2013, 10(2022), 4, p 139 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:4, p 139 |
Links: |
---|
DOI / URN: |
10.3390/chemosensors10040139 |
---|
Katalog-ID: |
DOAJ029893240 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029893240 | ||
003 | DE-627 | ||
005 | 20240414115106.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/chemosensors10040139 |2 doi | |
035 | |a (DE-627)DOAJ029893240 | ||
035 | |a (DE-599)DOAJ8ad1b3317ded4a1287cf543fcceb4dd6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD415-436 | |
100 | 0 | |a Lindomar A. Portugal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment. | ||
650 | 4 | |a antimony | |
650 | 4 | |a speciation analysis | |
650 | 4 | |a ICP-MS | |
650 | 4 | |a automation | |
653 | 0 | |a Biochemistry | |
700 | 0 | |a Edwin Palacio |e verfasserin |4 aut | |
700 | 0 | |a Víctor Cerdà |e verfasserin |4 aut | |
700 | 0 | |a Joao H. Santos-Neto |e verfasserin |4 aut | |
700 | 0 | |a Laura Ferrer |e verfasserin |4 aut | |
700 | 0 | |a Sergio L. C. Ferreira |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Chemosensors |d MDPI AG, 2013 |g 10(2022), 4, p 139 |w (DE-627)737287594 |w (DE-600)2704218-2 |x 22279040 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:4, p 139 |
856 | 4 | 0 | |u https://doi.org/10.3390/chemosensors10040139 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8ad1b3317ded4a1287cf543fcceb4dd6 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9040/10/4/139 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9040 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 4, p 139 |
author_variant |
l a p lap e p ep v c vc j h s n jhsn l f lf s l c f slcf |
---|---|
matchkey_str |
article:22279040:2022----::ipenfstotpulatmtdehdlgfrholnseitooiog |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QD |
publishDate |
2022 |
allfields |
10.3390/chemosensors10040139 doi (DE-627)DOAJ029893240 (DE-599)DOAJ8ad1b3317ded4a1287cf543fcceb4dd6 DE-627 ger DE-627 rakwb eng QD415-436 Lindomar A. Portugal verfasserin aut Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment. antimony speciation analysis ICP-MS automation Biochemistry Edwin Palacio verfasserin aut Víctor Cerdà verfasserin aut Joao H. Santos-Neto verfasserin aut Laura Ferrer verfasserin aut Sergio L. C. Ferreira verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 4, p 139 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:4, p 139 https://doi.org/10.3390/chemosensors10040139 kostenfrei https://doaj.org/article/8ad1b3317ded4a1287cf543fcceb4dd6 kostenfrei https://www.mdpi.com/2227-9040/10/4/139 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 4, p 139 |
spelling |
10.3390/chemosensors10040139 doi (DE-627)DOAJ029893240 (DE-599)DOAJ8ad1b3317ded4a1287cf543fcceb4dd6 DE-627 ger DE-627 rakwb eng QD415-436 Lindomar A. Portugal verfasserin aut Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment. antimony speciation analysis ICP-MS automation Biochemistry Edwin Palacio verfasserin aut Víctor Cerdà verfasserin aut Joao H. Santos-Neto verfasserin aut Laura Ferrer verfasserin aut Sergio L. C. Ferreira verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 4, p 139 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:4, p 139 https://doi.org/10.3390/chemosensors10040139 kostenfrei https://doaj.org/article/8ad1b3317ded4a1287cf543fcceb4dd6 kostenfrei https://www.mdpi.com/2227-9040/10/4/139 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 4, p 139 |
allfields_unstemmed |
10.3390/chemosensors10040139 doi (DE-627)DOAJ029893240 (DE-599)DOAJ8ad1b3317ded4a1287cf543fcceb4dd6 DE-627 ger DE-627 rakwb eng QD415-436 Lindomar A. Portugal verfasserin aut Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment. antimony speciation analysis ICP-MS automation Biochemistry Edwin Palacio verfasserin aut Víctor Cerdà verfasserin aut Joao H. Santos-Neto verfasserin aut Laura Ferrer verfasserin aut Sergio L. C. Ferreira verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 4, p 139 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:4, p 139 https://doi.org/10.3390/chemosensors10040139 kostenfrei https://doaj.org/article/8ad1b3317ded4a1287cf543fcceb4dd6 kostenfrei https://www.mdpi.com/2227-9040/10/4/139 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 4, p 139 |
allfieldsGer |
10.3390/chemosensors10040139 doi (DE-627)DOAJ029893240 (DE-599)DOAJ8ad1b3317ded4a1287cf543fcceb4dd6 DE-627 ger DE-627 rakwb eng QD415-436 Lindomar A. Portugal verfasserin aut Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment. antimony speciation analysis ICP-MS automation Biochemistry Edwin Palacio verfasserin aut Víctor Cerdà verfasserin aut Joao H. Santos-Neto verfasserin aut Laura Ferrer verfasserin aut Sergio L. C. Ferreira verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 4, p 139 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:4, p 139 https://doi.org/10.3390/chemosensors10040139 kostenfrei https://doaj.org/article/8ad1b3317ded4a1287cf543fcceb4dd6 kostenfrei https://www.mdpi.com/2227-9040/10/4/139 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 4, p 139 |
allfieldsSound |
10.3390/chemosensors10040139 doi (DE-627)DOAJ029893240 (DE-599)DOAJ8ad1b3317ded4a1287cf543fcceb4dd6 DE-627 ger DE-627 rakwb eng QD415-436 Lindomar A. Portugal verfasserin aut Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment. antimony speciation analysis ICP-MS automation Biochemistry Edwin Palacio verfasserin aut Víctor Cerdà verfasserin aut Joao H. Santos-Neto verfasserin aut Laura Ferrer verfasserin aut Sergio L. C. Ferreira verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 4, p 139 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:4, p 139 https://doi.org/10.3390/chemosensors10040139 kostenfrei https://doaj.org/article/8ad1b3317ded4a1287cf543fcceb4dd6 kostenfrei https://www.mdpi.com/2227-9040/10/4/139 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 4, p 139 |
language |
English |
source |
In Chemosensors 10(2022), 4, p 139 volume:10 year:2022 number:4, p 139 |
sourceStr |
In Chemosensors 10(2022), 4, p 139 volume:10 year:2022 number:4, p 139 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
antimony speciation analysis ICP-MS automation Biochemistry |
isfreeaccess_bool |
true |
container_title |
Chemosensors |
authorswithroles_txt_mv |
Lindomar A. Portugal @@aut@@ Edwin Palacio @@aut@@ Víctor Cerdà @@aut@@ Joao H. Santos-Neto @@aut@@ Laura Ferrer @@aut@@ Sergio L. C. Ferreira @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287594 |
id |
DOAJ029893240 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029893240</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414115106.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/chemosensors10040139</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029893240</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8ad1b3317ded4a1287cf543fcceb4dd6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lindomar A. Portugal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antimony</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">speciation analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICP-MS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edwin Palacio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Víctor Cerdà</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joao H. Santos-Neto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Ferrer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergio L. C. Ferreira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Chemosensors</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 4, p 139</subfield><subfield code="w">(DE-627)737287594</subfield><subfield code="w">(DE-600)2704218-2</subfield><subfield code="x">22279040</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 139</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/chemosensors10040139</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8ad1b3317ded4a1287cf543fcceb4dd6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9040/10/4/139</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9040</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 139</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Lindomar A. Portugal |
spellingShingle |
Lindomar A. Portugal misc QD415-436 misc antimony misc speciation analysis misc ICP-MS misc automation misc Biochemistry Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS |
authorStr |
Lindomar A. Portugal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287594 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD415-436 |
illustrated |
Not Illustrated |
issn |
22279040 |
topic_title |
QD415-436 Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS antimony speciation analysis ICP-MS automation |
topic |
misc QD415-436 misc antimony misc speciation analysis misc ICP-MS misc automation misc Biochemistry |
topic_unstemmed |
misc QD415-436 misc antimony misc speciation analysis misc ICP-MS misc automation misc Biochemistry |
topic_browse |
misc QD415-436 misc antimony misc speciation analysis misc ICP-MS misc automation misc Biochemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemosensors |
hierarchy_parent_id |
737287594 |
hierarchy_top_title |
Chemosensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287594 (DE-600)2704218-2 |
title |
Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS |
ctrlnum |
(DE-627)DOAJ029893240 (DE-599)DOAJ8ad1b3317ded4a1287cf543fcceb4dd6 |
title_full |
Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS |
author_sort |
Lindomar A. Portugal |
journal |
Chemosensors |
journalStr |
Chemosensors |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Lindomar A. Portugal Edwin Palacio Víctor Cerdà Joao H. Santos-Neto Laura Ferrer Sergio L. C. Ferreira |
container_volume |
10 |
class |
QD415-436 |
format_se |
Elektronische Aufsätze |
author-letter |
Lindomar A. Portugal |
doi_str_mv |
10.3390/chemosensors10040139 |
author2-role |
verfasserin |
title_sort |
simple and fast two-step fully automated methodology for the online speciation of inorganic antimony coupled to icp-ms |
callnumber |
QD415-436 |
title_auth |
Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS |
abstract |
A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment. |
abstractGer |
A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment. |
abstract_unstemmed |
A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 139 |
title_short |
Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS |
url |
https://doi.org/10.3390/chemosensors10040139 https://doaj.org/article/8ad1b3317ded4a1287cf543fcceb4dd6 https://www.mdpi.com/2227-9040/10/4/139 https://doaj.org/toc/2227-9040 |
remote_bool |
true |
author2 |
Edwin Palacio Víctor Cerdà Joao H. Santos-Neto Laura Ferrer Sergio L. C. Ferreira |
author2Str |
Edwin Palacio Víctor Cerdà Joao H. Santos-Neto Laura Ferrer Sergio L. C. Ferreira |
ppnlink |
737287594 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/chemosensors10040139 |
callnumber-a |
QD415-436 |
up_date |
2024-07-04T00:49:25.381Z |
_version_ |
1803607516533227520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029893240</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414115106.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/chemosensors10040139</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029893240</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8ad1b3317ded4a1287cf543fcceb4dd6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lindomar A. Portugal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simple and Fast Two-Step Fully Automated Methodology for the Online Speciation of Inorganic Antimony Coupled to ICP-MS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A very simple, fast and non-chromatographic methodology for inorganic antimony speciation based on Multisyringe Flow Injection Analysis (MSFIA) employing online hydride generation (HG) ICP-MS was developed. The fully automated analysis is performed in two steps: firstly, Sb(III) is quantified by ICP-MS after chemical vapor generation; then, total antimony is determined in the presence of potassium iodide as a pre-reducer of Sb(V) to Sb(III). The Sb(V) concentration is quantified by the difference between the total antimony and Sb(III) concentrations, reaching an analysis frequency of 30 h<sup<−1</sup<. The optimization was performed using a Box Behnken design. The MSFIA-HG-ICP-MS system allows the antimony speciation analysis with a detection limit of 0.016 µg L<sup<−1</sup< for Sb(III), working in a linear range of 0.053 to 5.0 µg L<sup<−1</sup<. This method was applied for the determination of Sb(III) and Sb(V) in water samples from Maiorca Island, Spain, and the concentrations found varied from 0.10 to 0.14 µg L<sup<−1</sup< for Sb(III) and from 0.12 to 0.28 µg L<sup<−1</sup< for Sb(V). The results were validated by addition/recovery tests, obtaining recoveries between 90 and 111% in both cases. Furthermore, a good precision was achieved, 1.4% RSD, and sample and reagent consumption were reduced to a few mL, with the consequent decrease in waste generation. Thus, the proposed method is a good tool for the speciation of inorganic antimony at ultra-trace levels in waters, allowing its risk assessment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antimony</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">speciation analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICP-MS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edwin Palacio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Víctor Cerdà</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joao H. Santos-Neto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Ferrer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sergio L. C. Ferreira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Chemosensors</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 4, p 139</subfield><subfield code="w">(DE-627)737287594</subfield><subfield code="w">(DE-600)2704218-2</subfield><subfield code="x">22279040</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 139</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/chemosensors10040139</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8ad1b3317ded4a1287cf543fcceb4dd6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9040/10/4/139</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9040</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 139</subfield></datafield></record></collection>
|
score |
7.4009886 |