A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers
With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. B...
Ausführliche Beschreibung
Autor*in: |
Xiaoxuan Hu [verfasserIn] Yanfei Sun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 9(2020), 12, p 2054 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2020 ; number:12, p 2054 |
Links: |
---|
DOI / URN: |
10.3390/electronics9122054 |
---|
Katalog-ID: |
DOAJ029976995 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ029976995 | ||
003 | DE-627 | ||
005 | 20240412210244.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics9122054 |2 doi | |
035 | |a (DE-627)DOAJ029976995 | ||
035 | |a (DE-599)DOAJcf16d1e8f93042de913b8c39c1858eb7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Xiaoxuan Hu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches. | ||
650 | 4 | |a green data center | |
650 | 4 | |a deep reinforcement Learning | |
650 | 4 | |a fuel cell | |
650 | 4 | |a workload scheduling | |
653 | 0 | |a Electronics | |
700 | 0 | |a Yanfei Sun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 9(2020), 12, p 2054 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2020 |g number:12, p 2054 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics9122054 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cf16d1e8f93042de913b8c39c1858eb7 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/9/12/2054 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2020 |e 12, p 2054 |
author_variant |
x h xh y s ys |
---|---|
matchkey_str |
article:20799292:2020----::derifreeterigaepwreoreaaeetofe |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.3390/electronics9122054 doi (DE-627)DOAJ029976995 (DE-599)DOAJcf16d1e8f93042de913b8c39c1858eb7 DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaoxuan Hu verfasserin aut A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches. green data center deep reinforcement Learning fuel cell workload scheduling Electronics Yanfei Sun verfasserin aut In Electronics MDPI AG, 2013 9(2020), 12, p 2054 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:12, p 2054 https://doi.org/10.3390/electronics9122054 kostenfrei https://doaj.org/article/cf16d1e8f93042de913b8c39c1858eb7 kostenfrei https://www.mdpi.com/2079-9292/9/12/2054 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 12, p 2054 |
spelling |
10.3390/electronics9122054 doi (DE-627)DOAJ029976995 (DE-599)DOAJcf16d1e8f93042de913b8c39c1858eb7 DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaoxuan Hu verfasserin aut A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches. green data center deep reinforcement Learning fuel cell workload scheduling Electronics Yanfei Sun verfasserin aut In Electronics MDPI AG, 2013 9(2020), 12, p 2054 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:12, p 2054 https://doi.org/10.3390/electronics9122054 kostenfrei https://doaj.org/article/cf16d1e8f93042de913b8c39c1858eb7 kostenfrei https://www.mdpi.com/2079-9292/9/12/2054 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 12, p 2054 |
allfields_unstemmed |
10.3390/electronics9122054 doi (DE-627)DOAJ029976995 (DE-599)DOAJcf16d1e8f93042de913b8c39c1858eb7 DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaoxuan Hu verfasserin aut A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches. green data center deep reinforcement Learning fuel cell workload scheduling Electronics Yanfei Sun verfasserin aut In Electronics MDPI AG, 2013 9(2020), 12, p 2054 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:12, p 2054 https://doi.org/10.3390/electronics9122054 kostenfrei https://doaj.org/article/cf16d1e8f93042de913b8c39c1858eb7 kostenfrei https://www.mdpi.com/2079-9292/9/12/2054 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 12, p 2054 |
allfieldsGer |
10.3390/electronics9122054 doi (DE-627)DOAJ029976995 (DE-599)DOAJcf16d1e8f93042de913b8c39c1858eb7 DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaoxuan Hu verfasserin aut A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches. green data center deep reinforcement Learning fuel cell workload scheduling Electronics Yanfei Sun verfasserin aut In Electronics MDPI AG, 2013 9(2020), 12, p 2054 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:12, p 2054 https://doi.org/10.3390/electronics9122054 kostenfrei https://doaj.org/article/cf16d1e8f93042de913b8c39c1858eb7 kostenfrei https://www.mdpi.com/2079-9292/9/12/2054 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 12, p 2054 |
allfieldsSound |
10.3390/electronics9122054 doi (DE-627)DOAJ029976995 (DE-599)DOAJcf16d1e8f93042de913b8c39c1858eb7 DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaoxuan Hu verfasserin aut A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches. green data center deep reinforcement Learning fuel cell workload scheduling Electronics Yanfei Sun verfasserin aut In Electronics MDPI AG, 2013 9(2020), 12, p 2054 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:9 year:2020 number:12, p 2054 https://doi.org/10.3390/electronics9122054 kostenfrei https://doaj.org/article/cf16d1e8f93042de913b8c39c1858eb7 kostenfrei https://www.mdpi.com/2079-9292/9/12/2054 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 12, p 2054 |
language |
English |
source |
In Electronics 9(2020), 12, p 2054 volume:9 year:2020 number:12, p 2054 |
sourceStr |
In Electronics 9(2020), 12, p 2054 volume:9 year:2020 number:12, p 2054 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
green data center deep reinforcement Learning fuel cell workload scheduling Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Xiaoxuan Hu @@aut@@ Yanfei Sun @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ029976995 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029976995</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412210244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics9122054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029976995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf16d1e8f93042de913b8c39c1858eb7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoxuan Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">green data center</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep reinforcement Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuel cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">workload scheduling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanfei Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2020), 12, p 2054</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:12, p 2054</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics9122054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf16d1e8f93042de913b8c39c1858eb7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/9/12/2054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">12, p 2054</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xiaoxuan Hu |
spellingShingle |
Xiaoxuan Hu misc TK7800-8360 misc green data center misc deep reinforcement Learning misc fuel cell misc workload scheduling misc Electronics A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers |
authorStr |
Xiaoxuan Hu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers green data center deep reinforcement Learning fuel cell workload scheduling |
topic |
misc TK7800-8360 misc green data center misc deep reinforcement Learning misc fuel cell misc workload scheduling misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc green data center misc deep reinforcement Learning misc fuel cell misc workload scheduling misc Electronics |
topic_browse |
misc TK7800-8360 misc green data center misc deep reinforcement Learning misc fuel cell misc workload scheduling misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers |
ctrlnum |
(DE-627)DOAJ029976995 (DE-599)DOAJcf16d1e8f93042de913b8c39c1858eb7 |
title_full |
A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers |
author_sort |
Xiaoxuan Hu |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Xiaoxuan Hu Yanfei Sun |
container_volume |
9 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaoxuan Hu |
doi_str_mv |
10.3390/electronics9122054 |
author2-role |
verfasserin |
title_sort |
deep reinforcement learning-based power resource management for fuel cell powered data centers |
callnumber |
TK7800-8360 |
title_auth |
A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers |
abstract |
With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches. |
abstractGer |
With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches. |
abstract_unstemmed |
With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 2054 |
title_short |
A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers |
url |
https://doi.org/10.3390/electronics9122054 https://doaj.org/article/cf16d1e8f93042de913b8c39c1858eb7 https://www.mdpi.com/2079-9292/9/12/2054 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Yanfei Sun |
author2Str |
Yanfei Sun |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics9122054 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-04T01:08:04.517Z |
_version_ |
1803608690019794944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ029976995</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412210244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics9122054</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ029976995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf16d1e8f93042de913b8c39c1858eb7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoxuan Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Deep Reinforcement Learning-Based Power Resource Management for Fuel Cell Powered Data Centers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the increase of data storage demands, the energy consumption of data centers is also increasing. Energy saving and use of power resources are two key problems to be solved. In this paper, we introduce the fuel cells as the energy supply and study power resource use in data center power grids. By considering the limited load following of fuel cells and power budget fragmentation phenomenon, we transform the main two objectives into the optimization of workload distribution problem and use a deep reinforcement learning-based method to solve it. The evaluations with real-world traces demonstrate the better performance of this work over state-of-art approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">green data center</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep reinforcement Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuel cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">workload scheduling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanfei Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2020), 12, p 2054</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:12, p 2054</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics9122054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf16d1e8f93042de913b8c39c1858eb7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/9/12/2054</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">12, p 2054</subfield></datafield></record></collection>
|
score |
7.402815 |