Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks
<italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs...
Ausführliche Beschreibung
Autor*in: |
Aizaz U. Chaudhry [verfasserIn] Halim Yanikomeroglu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
next-generation free-space optical satellite networks |
---|
Übergeordnetes Werk: |
In: IEEE Open Journal of the Communications Society - IEEE, 2020, 3(2022), Seite 1413-1427 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2022 ; pages:1413-1427 |
Links: |
---|
DOI / URN: |
10.1109/OJCOMS.2022.3198391 |
---|
Katalog-ID: |
DOAJ02999294X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02999294X | ||
003 | DE-627 | ||
005 | 20230307142303.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/OJCOMS.2022.3198391 |2 doi | |
035 | |a (DE-627)DOAJ02999294X | ||
035 | |a (DE-599)DOAJde79fe25a2eb4794a2536750879b3712 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK5101-6720 | |
050 | 0 | |a HE1-9990 | |
100 | 0 | |a Aizaz U. Chaudhry |e verfasserin |4 aut | |
245 | 1 | 0 | |a Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range. | ||
650 | 4 | |a Network latency | |
650 | 4 | |a next-generation free-space optical satellite networks | |
650 | 4 | |a next-next-generation free-space optical satellite networks | |
650 | 4 | |a Starlink | |
650 | 4 | |a temporary laser inter-satellite links | |
653 | 0 | |a Telecommunication | |
653 | 0 | |a Transportation and communications | |
700 | 0 | |a Halim Yanikomeroglu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Open Journal of the Communications Society |d IEEE, 2020 |g 3(2022), Seite 1413-1427 |w (DE-627)1688526900 |w (DE-600)3006427-2 |x 2644125X |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2022 |g pages:1413-1427 |
856 | 4 | 0 | |u https://doi.org/10.1109/OJCOMS.2022.3198391 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/de79fe25a2eb4794a2536750879b3712 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9855659/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2644-125X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2022 |h 1413-1427 |
author_variant |
a u c auc h y hy |
---|---|
matchkey_str |
article:2644125X:2022----::eprrlsrnestlieikifesaepia |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/OJCOMS.2022.3198391 doi (DE-627)DOAJ02999294X (DE-599)DOAJde79fe25a2eb4794a2536750879b3712 DE-627 ger DE-627 rakwb eng TK5101-6720 HE1-9990 Aizaz U. Chaudhry verfasserin aut Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range. Network latency next-generation free-space optical satellite networks next-next-generation free-space optical satellite networks Starlink temporary laser inter-satellite links Telecommunication Transportation and communications Halim Yanikomeroglu verfasserin aut In IEEE Open Journal of the Communications Society IEEE, 2020 3(2022), Seite 1413-1427 (DE-627)1688526900 (DE-600)3006427-2 2644125X nnns volume:3 year:2022 pages:1413-1427 https://doi.org/10.1109/OJCOMS.2022.3198391 kostenfrei https://doaj.org/article/de79fe25a2eb4794a2536750879b3712 kostenfrei https://ieeexplore.ieee.org/document/9855659/ kostenfrei https://doaj.org/toc/2644-125X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 1413-1427 |
spelling |
10.1109/OJCOMS.2022.3198391 doi (DE-627)DOAJ02999294X (DE-599)DOAJde79fe25a2eb4794a2536750879b3712 DE-627 ger DE-627 rakwb eng TK5101-6720 HE1-9990 Aizaz U. Chaudhry verfasserin aut Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range. Network latency next-generation free-space optical satellite networks next-next-generation free-space optical satellite networks Starlink temporary laser inter-satellite links Telecommunication Transportation and communications Halim Yanikomeroglu verfasserin aut In IEEE Open Journal of the Communications Society IEEE, 2020 3(2022), Seite 1413-1427 (DE-627)1688526900 (DE-600)3006427-2 2644125X nnns volume:3 year:2022 pages:1413-1427 https://doi.org/10.1109/OJCOMS.2022.3198391 kostenfrei https://doaj.org/article/de79fe25a2eb4794a2536750879b3712 kostenfrei https://ieeexplore.ieee.org/document/9855659/ kostenfrei https://doaj.org/toc/2644-125X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 1413-1427 |
allfields_unstemmed |
10.1109/OJCOMS.2022.3198391 doi (DE-627)DOAJ02999294X (DE-599)DOAJde79fe25a2eb4794a2536750879b3712 DE-627 ger DE-627 rakwb eng TK5101-6720 HE1-9990 Aizaz U. Chaudhry verfasserin aut Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range. Network latency next-generation free-space optical satellite networks next-next-generation free-space optical satellite networks Starlink temporary laser inter-satellite links Telecommunication Transportation and communications Halim Yanikomeroglu verfasserin aut In IEEE Open Journal of the Communications Society IEEE, 2020 3(2022), Seite 1413-1427 (DE-627)1688526900 (DE-600)3006427-2 2644125X nnns volume:3 year:2022 pages:1413-1427 https://doi.org/10.1109/OJCOMS.2022.3198391 kostenfrei https://doaj.org/article/de79fe25a2eb4794a2536750879b3712 kostenfrei https://ieeexplore.ieee.org/document/9855659/ kostenfrei https://doaj.org/toc/2644-125X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 1413-1427 |
allfieldsGer |
10.1109/OJCOMS.2022.3198391 doi (DE-627)DOAJ02999294X (DE-599)DOAJde79fe25a2eb4794a2536750879b3712 DE-627 ger DE-627 rakwb eng TK5101-6720 HE1-9990 Aizaz U. Chaudhry verfasserin aut Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range. Network latency next-generation free-space optical satellite networks next-next-generation free-space optical satellite networks Starlink temporary laser inter-satellite links Telecommunication Transportation and communications Halim Yanikomeroglu verfasserin aut In IEEE Open Journal of the Communications Society IEEE, 2020 3(2022), Seite 1413-1427 (DE-627)1688526900 (DE-600)3006427-2 2644125X nnns volume:3 year:2022 pages:1413-1427 https://doi.org/10.1109/OJCOMS.2022.3198391 kostenfrei https://doaj.org/article/de79fe25a2eb4794a2536750879b3712 kostenfrei https://ieeexplore.ieee.org/document/9855659/ kostenfrei https://doaj.org/toc/2644-125X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 1413-1427 |
allfieldsSound |
10.1109/OJCOMS.2022.3198391 doi (DE-627)DOAJ02999294X (DE-599)DOAJde79fe25a2eb4794a2536750879b3712 DE-627 ger DE-627 rakwb eng TK5101-6720 HE1-9990 Aizaz U. Chaudhry verfasserin aut Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range. Network latency next-generation free-space optical satellite networks next-next-generation free-space optical satellite networks Starlink temporary laser inter-satellite links Telecommunication Transportation and communications Halim Yanikomeroglu verfasserin aut In IEEE Open Journal of the Communications Society IEEE, 2020 3(2022), Seite 1413-1427 (DE-627)1688526900 (DE-600)3006427-2 2644125X nnns volume:3 year:2022 pages:1413-1427 https://doi.org/10.1109/OJCOMS.2022.3198391 kostenfrei https://doaj.org/article/de79fe25a2eb4794a2536750879b3712 kostenfrei https://ieeexplore.ieee.org/document/9855659/ kostenfrei https://doaj.org/toc/2644-125X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 1413-1427 |
language |
English |
source |
In IEEE Open Journal of the Communications Society 3(2022), Seite 1413-1427 volume:3 year:2022 pages:1413-1427 |
sourceStr |
In IEEE Open Journal of the Communications Society 3(2022), Seite 1413-1427 volume:3 year:2022 pages:1413-1427 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Network latency next-generation free-space optical satellite networks next-next-generation free-space optical satellite networks Starlink temporary laser inter-satellite links Telecommunication Transportation and communications |
isfreeaccess_bool |
true |
container_title |
IEEE Open Journal of the Communications Society |
authorswithroles_txt_mv |
Aizaz U. Chaudhry @@aut@@ Halim Yanikomeroglu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1688526900 |
id |
DOAJ02999294X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02999294X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307142303.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/OJCOMS.2022.3198391</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02999294X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJde79fe25a2eb4794a2536750879b3712</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5101-6720</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HE1-9990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Aizaz U. Chaudhry</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network latency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next-generation free-space optical satellite networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next-next-generation free-space optical satellite networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Starlink</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temporary laser inter-satellite links</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Telecommunication</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communications</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Halim Yanikomeroglu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Open Journal of the Communications Society</subfield><subfield code="d">IEEE, 2020</subfield><subfield code="g">3(2022), Seite 1413-1427</subfield><subfield code="w">(DE-627)1688526900</subfield><subfield code="w">(DE-600)3006427-2</subfield><subfield code="x">2644125X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:1413-1427</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/OJCOMS.2022.3198391</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/de79fe25a2eb4794a2536750879b3712</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9855659/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2644-125X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="h">1413-1427</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Aizaz U. Chaudhry |
spellingShingle |
Aizaz U. Chaudhry misc TK5101-6720 misc HE1-9990 misc Network latency misc next-generation free-space optical satellite networks misc next-next-generation free-space optical satellite networks misc Starlink misc temporary laser inter-satellite links misc Telecommunication misc Transportation and communications Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks |
authorStr |
Aizaz U. Chaudhry |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1688526900 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK5101-6720 |
illustrated |
Not Illustrated |
issn |
2644125X |
topic_title |
TK5101-6720 HE1-9990 Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks Network latency next-generation free-space optical satellite networks next-next-generation free-space optical satellite networks Starlink temporary laser inter-satellite links |
topic |
misc TK5101-6720 misc HE1-9990 misc Network latency misc next-generation free-space optical satellite networks misc next-next-generation free-space optical satellite networks misc Starlink misc temporary laser inter-satellite links misc Telecommunication misc Transportation and communications |
topic_unstemmed |
misc TK5101-6720 misc HE1-9990 misc Network latency misc next-generation free-space optical satellite networks misc next-next-generation free-space optical satellite networks misc Starlink misc temporary laser inter-satellite links misc Telecommunication misc Transportation and communications |
topic_browse |
misc TK5101-6720 misc HE1-9990 misc Network latency misc next-generation free-space optical satellite networks misc next-next-generation free-space optical satellite networks misc Starlink misc temporary laser inter-satellite links misc Telecommunication misc Transportation and communications |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Open Journal of the Communications Society |
hierarchy_parent_id |
1688526900 |
hierarchy_top_title |
IEEE Open Journal of the Communications Society |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1688526900 (DE-600)3006427-2 |
title |
Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks |
ctrlnum |
(DE-627)DOAJ02999294X (DE-599)DOAJde79fe25a2eb4794a2536750879b3712 |
title_full |
Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks |
author_sort |
Aizaz U. Chaudhry |
journal |
IEEE Open Journal of the Communications Society |
journalStr |
IEEE Open Journal of the Communications Society |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1413 |
author_browse |
Aizaz U. Chaudhry Halim Yanikomeroglu |
container_volume |
3 |
class |
TK5101-6720 HE1-9990 |
format_se |
Elektronische Aufsätze |
author-letter |
Aizaz U. Chaudhry |
doi_str_mv |
10.1109/OJCOMS.2022.3198391 |
author2-role |
verfasserin |
title_sort |
temporary laser inter-satellite links in free-space optical satellite networks |
callnumber |
TK5101-6720 |
title_auth |
Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks |
abstract |
<italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range. |
abstractGer |
<italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range. |
abstract_unstemmed |
<italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks |
url |
https://doi.org/10.1109/OJCOMS.2022.3198391 https://doaj.org/article/de79fe25a2eb4794a2536750879b3712 https://ieeexplore.ieee.org/document/9855659/ https://doaj.org/toc/2644-125X |
remote_bool |
true |
author2 |
Halim Yanikomeroglu |
author2Str |
Halim Yanikomeroglu |
ppnlink |
1688526900 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/OJCOMS.2022.3198391 |
callnumber-a |
TK5101-6720 |
up_date |
2024-07-04T01:11:27.102Z |
_version_ |
1803608902445563904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02999294X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307142303.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/OJCOMS.2022.3198391</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02999294X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJde79fe25a2eb4794a2536750879b3712</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5101-6720</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HE1-9990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Aizaz U. Chaudhry</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temporary Laser Inter-Satellite Links in Free-Space Optical Satellite Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><italic<Laser inter-satellite links</italic< (LISLs) between satellites in a <italic<free-space optical satellite network</italic< (FSOSN) can be divided into two classes: <italic<permanent LISLs</italic< (PLs) and <italic<temporary LISLs</italic< (TLs). TLs are not desirable in <italic<next-generation FSOSNs</italic< (NG-FSOSNs) due to high LISL setup time, but they may become feasible in <italic<next-next-generation FSOSNs</italic< (NNG-FSOSNs). Using the satellite constellation for Phase I of Starlink, we study the impact of TLs on network latency in an NG-FSOSN (which has only PLs) versus an NNG-FSOSN (which has PLs and TLs) under different long-distance inter-continental data communications scenarios, including Sydney–Sao Paulo, Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta, and different LISL ranges for satellites, including 659.5 km, 1,319 km, 1,500 km, 1,700 km, 2,500 km, 3,500 km, and 5,016 km. It is observed from the results that TLs provide higher satellite connectivity and thereby higher network connectivity, and they lead to lower average network latency for the NNG-FSOSN compared to the NG-FSOSN in all scenarios at all LISL ranges. In comparison with the NG-FSOSN, the improvement in latency with the NNG-FSOSN is significant at LISL ranges of 1,500 km, 1,700 km, and 2,500 km, where the improvement is 16.83 ms, 23.43 ms, and 18.20 ms, respectively, for the Sydney–Sao Paulo inter-continental connection. For the Toronto–Istanbul, Madrid–Tokyo, and New York–Jakarta inter-continental connections, the improvement is 14.58 ms, 23.35 ms, and 23.52 ms, respectively, at the 1,700 km LISL range.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network latency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next-generation free-space optical satellite networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">next-next-generation free-space optical satellite networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Starlink</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temporary laser inter-satellite links</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Telecommunication</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communications</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Halim Yanikomeroglu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Open Journal of the Communications Society</subfield><subfield code="d">IEEE, 2020</subfield><subfield code="g">3(2022), Seite 1413-1427</subfield><subfield code="w">(DE-627)1688526900</subfield><subfield code="w">(DE-600)3006427-2</subfield><subfield code="x">2644125X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:1413-1427</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/OJCOMS.2022.3198391</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/de79fe25a2eb4794a2536750879b3712</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9855659/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2644-125X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield><subfield code="h">1413-1427</subfield></datafield></record></collection>
|
score |
7.4005175 |