A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter
Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are...
Ausführliche Beschreibung
Autor*in: |
Zhao Yafeng [verfasserIn] Ren Hong’e [verfasserIn] Hu Junfeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors & Transducers - IFSA Publishing, S.L., 2017, 177(2014), 8, Seite 6 |
---|---|
Übergeordnetes Werk: |
volume:177 ; year:2014 ; number:8 ; pages:6 |
Links: |
---|
Katalog-ID: |
DOAJ030248744 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030248744 | ||
003 | DE-627 | ||
005 | 20230503062811.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2014 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ030248744 | ||
035 | |a (DE-599)DOAJ917e93f60ce04969be03c2b602948e22 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T1-995 | |
100 | 0 | |a Zhao Yafeng |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking. | ||
650 | 4 | |a Wireless Sensor Network | |
650 | 4 | |a Target Tracking | |
650 | 4 | |a Simultaneous Localization and Tracking. | |
653 | 0 | |a Technology (General) | |
700 | 0 | |a Ren Hong’e |e verfasserin |4 aut | |
700 | 0 | |a Hu Junfeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors & Transducers |d IFSA Publishing, S.L., 2017 |g 177(2014), 8, Seite 6 |w (DE-627)887864724 |w (DE-600)2894997-3 |x 17265479 |7 nnns |
773 | 1 | 8 | |g volume:177 |g year:2014 |g number:8 |g pages:6 |
856 | 4 | 0 | |u https://doaj.org/article/917e93f60ce04969be03c2b602948e22 |z kostenfrei |
856 | 4 | 0 | |u http://www.sensorsportal.com/HTML/DIGEST/august_2014/Vol_177/P_1943.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2306-8515 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1726-5479 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 177 |j 2014 |e 8 |h 6 |
author_variant |
z y zy r h rh h j hj |
---|---|
matchkey_str |
article:17265479:2014----::smlaeulclztoadrcigloihbsdno |
hierarchy_sort_str |
2014 |
callnumber-subject-code |
T |
publishDate |
2014 |
allfields |
(DE-627)DOAJ030248744 (DE-599)DOAJ917e93f60ce04969be03c2b602948e22 DE-627 ger DE-627 rakwb eng T1-995 Zhao Yafeng verfasserin aut A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking. Wireless Sensor Network Target Tracking Simultaneous Localization and Tracking. Technology (General) Ren Hong’e verfasserin aut Hu Junfeng verfasserin aut In Sensors & Transducers IFSA Publishing, S.L., 2017 177(2014), 8, Seite 6 (DE-627)887864724 (DE-600)2894997-3 17265479 nnns volume:177 year:2014 number:8 pages:6 https://doaj.org/article/917e93f60ce04969be03c2b602948e22 kostenfrei http://www.sensorsportal.com/HTML/DIGEST/august_2014/Vol_177/P_1943.pdf kostenfrei https://doaj.org/toc/2306-8515 Journal toc kostenfrei https://doaj.org/toc/1726-5479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 177 2014 8 6 |
spelling |
(DE-627)DOAJ030248744 (DE-599)DOAJ917e93f60ce04969be03c2b602948e22 DE-627 ger DE-627 rakwb eng T1-995 Zhao Yafeng verfasserin aut A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking. Wireless Sensor Network Target Tracking Simultaneous Localization and Tracking. Technology (General) Ren Hong’e verfasserin aut Hu Junfeng verfasserin aut In Sensors & Transducers IFSA Publishing, S.L., 2017 177(2014), 8, Seite 6 (DE-627)887864724 (DE-600)2894997-3 17265479 nnns volume:177 year:2014 number:8 pages:6 https://doaj.org/article/917e93f60ce04969be03c2b602948e22 kostenfrei http://www.sensorsportal.com/HTML/DIGEST/august_2014/Vol_177/P_1943.pdf kostenfrei https://doaj.org/toc/2306-8515 Journal toc kostenfrei https://doaj.org/toc/1726-5479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 177 2014 8 6 |
allfields_unstemmed |
(DE-627)DOAJ030248744 (DE-599)DOAJ917e93f60ce04969be03c2b602948e22 DE-627 ger DE-627 rakwb eng T1-995 Zhao Yafeng verfasserin aut A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking. Wireless Sensor Network Target Tracking Simultaneous Localization and Tracking. Technology (General) Ren Hong’e verfasserin aut Hu Junfeng verfasserin aut In Sensors & Transducers IFSA Publishing, S.L., 2017 177(2014), 8, Seite 6 (DE-627)887864724 (DE-600)2894997-3 17265479 nnns volume:177 year:2014 number:8 pages:6 https://doaj.org/article/917e93f60ce04969be03c2b602948e22 kostenfrei http://www.sensorsportal.com/HTML/DIGEST/august_2014/Vol_177/P_1943.pdf kostenfrei https://doaj.org/toc/2306-8515 Journal toc kostenfrei https://doaj.org/toc/1726-5479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 177 2014 8 6 |
allfieldsGer |
(DE-627)DOAJ030248744 (DE-599)DOAJ917e93f60ce04969be03c2b602948e22 DE-627 ger DE-627 rakwb eng T1-995 Zhao Yafeng verfasserin aut A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking. Wireless Sensor Network Target Tracking Simultaneous Localization and Tracking. Technology (General) Ren Hong’e verfasserin aut Hu Junfeng verfasserin aut In Sensors & Transducers IFSA Publishing, S.L., 2017 177(2014), 8, Seite 6 (DE-627)887864724 (DE-600)2894997-3 17265479 nnns volume:177 year:2014 number:8 pages:6 https://doaj.org/article/917e93f60ce04969be03c2b602948e22 kostenfrei http://www.sensorsportal.com/HTML/DIGEST/august_2014/Vol_177/P_1943.pdf kostenfrei https://doaj.org/toc/2306-8515 Journal toc kostenfrei https://doaj.org/toc/1726-5479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 177 2014 8 6 |
allfieldsSound |
(DE-627)DOAJ030248744 (DE-599)DOAJ917e93f60ce04969be03c2b602948e22 DE-627 ger DE-627 rakwb eng T1-995 Zhao Yafeng verfasserin aut A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking. Wireless Sensor Network Target Tracking Simultaneous Localization and Tracking. Technology (General) Ren Hong’e verfasserin aut Hu Junfeng verfasserin aut In Sensors & Transducers IFSA Publishing, S.L., 2017 177(2014), 8, Seite 6 (DE-627)887864724 (DE-600)2894997-3 17265479 nnns volume:177 year:2014 number:8 pages:6 https://doaj.org/article/917e93f60ce04969be03c2b602948e22 kostenfrei http://www.sensorsportal.com/HTML/DIGEST/august_2014/Vol_177/P_1943.pdf kostenfrei https://doaj.org/toc/2306-8515 Journal toc kostenfrei https://doaj.org/toc/1726-5479 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 177 2014 8 6 |
language |
English |
source |
In Sensors & Transducers 177(2014), 8, Seite 6 volume:177 year:2014 number:8 pages:6 |
sourceStr |
In Sensors & Transducers 177(2014), 8, Seite 6 volume:177 year:2014 number:8 pages:6 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wireless Sensor Network Target Tracking Simultaneous Localization and Tracking. Technology (General) |
isfreeaccess_bool |
true |
container_title |
Sensors & Transducers |
authorswithroles_txt_mv |
Zhao Yafeng @@aut@@ Ren Hong’e @@aut@@ Hu Junfeng @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
887864724 |
id |
DOAJ030248744 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030248744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030248744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ917e93f60ce04969be03c2b602948e22</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhao Yafeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless Sensor Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Target Tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simultaneous Localization and Tracking.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ren Hong’e</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hu Junfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors & Transducers</subfield><subfield code="d">IFSA Publishing, S.L., 2017</subfield><subfield code="g">177(2014), 8, Seite 6</subfield><subfield code="w">(DE-627)887864724</subfield><subfield code="w">(DE-600)2894997-3</subfield><subfield code="x">17265479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:177</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/917e93f60ce04969be03c2b602948e22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sensorsportal.com/HTML/DIGEST/august_2014/Vol_177/P_1943.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2306-8515</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1726-5479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">177</subfield><subfield code="j">2014</subfield><subfield code="e">8</subfield><subfield code="h">6</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zhao Yafeng |
spellingShingle |
Zhao Yafeng misc T1-995 misc Wireless Sensor Network misc Target Tracking misc Simultaneous Localization and Tracking. misc Technology (General) A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter |
authorStr |
Zhao Yafeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)887864724 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T1-995 |
illustrated |
Not Illustrated |
issn |
17265479 |
topic_title |
T1-995 A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter Wireless Sensor Network Target Tracking Simultaneous Localization and Tracking |
topic |
misc T1-995 misc Wireless Sensor Network misc Target Tracking misc Simultaneous Localization and Tracking. misc Technology (General) |
topic_unstemmed |
misc T1-995 misc Wireless Sensor Network misc Target Tracking misc Simultaneous Localization and Tracking. misc Technology (General) |
topic_browse |
misc T1-995 misc Wireless Sensor Network misc Target Tracking misc Simultaneous Localization and Tracking. misc Technology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors & Transducers |
hierarchy_parent_id |
887864724 |
hierarchy_top_title |
Sensors & Transducers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)887864724 (DE-600)2894997-3 |
title |
A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter |
ctrlnum |
(DE-627)DOAJ030248744 (DE-599)DOAJ917e93f60ce04969be03c2b602948e22 |
title_full |
A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter |
author_sort |
Zhao Yafeng |
journal |
Sensors & Transducers |
journalStr |
Sensors & Transducers |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
6 |
author_browse |
Zhao Yafeng Ren Hong’e Hu Junfeng |
container_volume |
177 |
class |
T1-995 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhao Yafeng |
author2-role |
verfasserin |
title_sort |
simultaneous localization and tracking algorithm based on compressing kalman filter |
callnumber |
T1-995 |
title_auth |
A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter |
abstract |
Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking. |
abstractGer |
Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking. |
abstract_unstemmed |
Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8 |
title_short |
A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter |
url |
https://doaj.org/article/917e93f60ce04969be03c2b602948e22 http://www.sensorsportal.com/HTML/DIGEST/august_2014/Vol_177/P_1943.pdf https://doaj.org/toc/2306-8515 https://doaj.org/toc/1726-5479 |
remote_bool |
true |
author2 |
Ren Hong’e Hu Junfeng |
author2Str |
Ren Hong’e Hu Junfeng |
ppnlink |
887864724 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
T1-995 |
up_date |
2024-07-03T13:51:50.009Z |
_version_ |
1803566144584417280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030248744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030248744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ917e93f60ce04969be03c2b602948e22</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhao Yafeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Simultaneous Localization and Tracking Algorithm Based on Compressing Kalman Filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Simultaneous Localization and tracking was studied to solute the problem of tracking a moving target in a sensor network while simultaneously localizing and calibrating the nodes of the network. RSSI is used for measuring the distance between the nodes pairs, multidimensional scaling techniques are used for the initial position of wireless sensor network based on the distance matrix. Then the compression Kalman filter is used to estimate and update the sensor node position and the target position. Simulation results show that the algorithm has high accuracy and real-time performance under low network, especially for long distance tracking.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless Sensor Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Target Tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simultaneous Localization and Tracking.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ren Hong’e</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hu Junfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors & Transducers</subfield><subfield code="d">IFSA Publishing, S.L., 2017</subfield><subfield code="g">177(2014), 8, Seite 6</subfield><subfield code="w">(DE-627)887864724</subfield><subfield code="w">(DE-600)2894997-3</subfield><subfield code="x">17265479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:177</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/917e93f60ce04969be03c2b602948e22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sensorsportal.com/HTML/DIGEST/august_2014/Vol_177/P_1943.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2306-8515</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1726-5479</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">177</subfield><subfield code="j">2014</subfield><subfield code="e">8</subfield><subfield code="h">6</subfield></datafield></record></collection>
|
score |
7.4021063 |