Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI
The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent...
Ausführliche Beschreibung
Autor*in: |
Evangelia G. Chryssou [verfasserIn] Georgios C. Manikis [verfasserIn] Georgios S. Ioannidis [verfasserIn] Vrettos Chaniotis [verfasserIn] Thomas Vrekoussis [verfasserIn] Thomas G. Maris [verfasserIn] Kostas Marias [verfasserIn] Apostolos H. Karantanas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Diagnostics - MDPI AG, 2012, 12(2022), 3, p 692 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:3, p 692 |
Links: |
---|
DOI / URN: |
10.3390/diagnostics12030692 |
---|
Katalog-ID: |
DOAJ030252334 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030252334 | ||
003 | DE-627 | ||
005 | 20240414175136.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/diagnostics12030692 |2 doi | |
035 | |a (DE-627)DOAJ030252334 | ||
035 | |a (DE-599)DOAJ38086c3597a745d686048007ac6324f0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R5-920 | |
100 | 0 | |a Evangelia G. Chryssou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors. | ||
650 | 4 | |a endometrial carcinoma | |
650 | 4 | |a MR imaging/diagnosis | |
650 | 4 | |a diffusion weighted imaging | |
650 | 4 | |a intravoxel incoherent motion | |
650 | 4 | |a tumor grade | |
650 | 4 | |a histogram analysis | |
653 | 0 | |a Medicine (General) | |
700 | 0 | |a Georgios C. Manikis |e verfasserin |4 aut | |
700 | 0 | |a Georgios S. Ioannidis |e verfasserin |4 aut | |
700 | 0 | |a Vrettos Chaniotis |e verfasserin |4 aut | |
700 | 0 | |a Thomas Vrekoussis |e verfasserin |4 aut | |
700 | 0 | |a Thomas G. Maris |e verfasserin |4 aut | |
700 | 0 | |a Kostas Marias |e verfasserin |4 aut | |
700 | 0 | |a Apostolos H. Karantanas |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Diagnostics |d MDPI AG, 2012 |g 12(2022), 3, p 692 |w (DE-627)718627814 |w (DE-600)2662336-5 |x 20754418 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:3, p 692 |
856 | 4 | 0 | |u https://doi.org/10.3390/diagnostics12030692 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/38086c3597a745d686048007ac6324f0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4418/12/3/692 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4418 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 3, p 692 |
author_variant |
e g c egc g c m gcm g s i gsi v c vc t v tv t g m tgm k m km a h k ahk |
---|---|
matchkey_str |
article:20754418:2022----::ifsowiheiaignhassmnotmrrdiedmtilacraeoi |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
R |
publishDate |
2022 |
allfields |
10.3390/diagnostics12030692 doi (DE-627)DOAJ030252334 (DE-599)DOAJ38086c3597a745d686048007ac6324f0 DE-627 ger DE-627 rakwb eng R5-920 Evangelia G. Chryssou verfasserin aut Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors. endometrial carcinoma MR imaging/diagnosis diffusion weighted imaging intravoxel incoherent motion tumor grade histogram analysis Medicine (General) Georgios C. Manikis verfasserin aut Georgios S. Ioannidis verfasserin aut Vrettos Chaniotis verfasserin aut Thomas Vrekoussis verfasserin aut Thomas G. Maris verfasserin aut Kostas Marias verfasserin aut Apostolos H. Karantanas verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 3, p 692 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:3, p 692 https://doi.org/10.3390/diagnostics12030692 kostenfrei https://doaj.org/article/38086c3597a745d686048007ac6324f0 kostenfrei https://www.mdpi.com/2075-4418/12/3/692 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 692 |
spelling |
10.3390/diagnostics12030692 doi (DE-627)DOAJ030252334 (DE-599)DOAJ38086c3597a745d686048007ac6324f0 DE-627 ger DE-627 rakwb eng R5-920 Evangelia G. Chryssou verfasserin aut Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors. endometrial carcinoma MR imaging/diagnosis diffusion weighted imaging intravoxel incoherent motion tumor grade histogram analysis Medicine (General) Georgios C. Manikis verfasserin aut Georgios S. Ioannidis verfasserin aut Vrettos Chaniotis verfasserin aut Thomas Vrekoussis verfasserin aut Thomas G. Maris verfasserin aut Kostas Marias verfasserin aut Apostolos H. Karantanas verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 3, p 692 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:3, p 692 https://doi.org/10.3390/diagnostics12030692 kostenfrei https://doaj.org/article/38086c3597a745d686048007ac6324f0 kostenfrei https://www.mdpi.com/2075-4418/12/3/692 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 692 |
allfields_unstemmed |
10.3390/diagnostics12030692 doi (DE-627)DOAJ030252334 (DE-599)DOAJ38086c3597a745d686048007ac6324f0 DE-627 ger DE-627 rakwb eng R5-920 Evangelia G. Chryssou verfasserin aut Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors. endometrial carcinoma MR imaging/diagnosis diffusion weighted imaging intravoxel incoherent motion tumor grade histogram analysis Medicine (General) Georgios C. Manikis verfasserin aut Georgios S. Ioannidis verfasserin aut Vrettos Chaniotis verfasserin aut Thomas Vrekoussis verfasserin aut Thomas G. Maris verfasserin aut Kostas Marias verfasserin aut Apostolos H. Karantanas verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 3, p 692 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:3, p 692 https://doi.org/10.3390/diagnostics12030692 kostenfrei https://doaj.org/article/38086c3597a745d686048007ac6324f0 kostenfrei https://www.mdpi.com/2075-4418/12/3/692 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 692 |
allfieldsGer |
10.3390/diagnostics12030692 doi (DE-627)DOAJ030252334 (DE-599)DOAJ38086c3597a745d686048007ac6324f0 DE-627 ger DE-627 rakwb eng R5-920 Evangelia G. Chryssou verfasserin aut Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors. endometrial carcinoma MR imaging/diagnosis diffusion weighted imaging intravoxel incoherent motion tumor grade histogram analysis Medicine (General) Georgios C. Manikis verfasserin aut Georgios S. Ioannidis verfasserin aut Vrettos Chaniotis verfasserin aut Thomas Vrekoussis verfasserin aut Thomas G. Maris verfasserin aut Kostas Marias verfasserin aut Apostolos H. Karantanas verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 3, p 692 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:3, p 692 https://doi.org/10.3390/diagnostics12030692 kostenfrei https://doaj.org/article/38086c3597a745d686048007ac6324f0 kostenfrei https://www.mdpi.com/2075-4418/12/3/692 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 692 |
allfieldsSound |
10.3390/diagnostics12030692 doi (DE-627)DOAJ030252334 (DE-599)DOAJ38086c3597a745d686048007ac6324f0 DE-627 ger DE-627 rakwb eng R5-920 Evangelia G. Chryssou verfasserin aut Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors. endometrial carcinoma MR imaging/diagnosis diffusion weighted imaging intravoxel incoherent motion tumor grade histogram analysis Medicine (General) Georgios C. Manikis verfasserin aut Georgios S. Ioannidis verfasserin aut Vrettos Chaniotis verfasserin aut Thomas Vrekoussis verfasserin aut Thomas G. Maris verfasserin aut Kostas Marias verfasserin aut Apostolos H. Karantanas verfasserin aut In Diagnostics MDPI AG, 2012 12(2022), 3, p 692 (DE-627)718627814 (DE-600)2662336-5 20754418 nnns volume:12 year:2022 number:3, p 692 https://doi.org/10.3390/diagnostics12030692 kostenfrei https://doaj.org/article/38086c3597a745d686048007ac6324f0 kostenfrei https://www.mdpi.com/2075-4418/12/3/692 kostenfrei https://doaj.org/toc/2075-4418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 3, p 692 |
language |
English |
source |
In Diagnostics 12(2022), 3, p 692 volume:12 year:2022 number:3, p 692 |
sourceStr |
In Diagnostics 12(2022), 3, p 692 volume:12 year:2022 number:3, p 692 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
endometrial carcinoma MR imaging/diagnosis diffusion weighted imaging intravoxel incoherent motion tumor grade histogram analysis Medicine (General) |
isfreeaccess_bool |
true |
container_title |
Diagnostics |
authorswithroles_txt_mv |
Evangelia G. Chryssou @@aut@@ Georgios C. Manikis @@aut@@ Georgios S. Ioannidis @@aut@@ Vrettos Chaniotis @@aut@@ Thomas Vrekoussis @@aut@@ Thomas G. Maris @@aut@@ Kostas Marias @@aut@@ Apostolos H. Karantanas @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718627814 |
id |
DOAJ030252334 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030252334</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414175136.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/diagnostics12030692</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030252334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ38086c3597a745d686048007ac6324f0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Evangelia G. Chryssou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">endometrial carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MR imaging/diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diffusion weighted imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intravoxel incoherent motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tumor grade</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">histogram analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios C. Manikis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios S. Ioannidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vrettos Chaniotis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Vrekoussis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas G. Maris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kostas Marias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Apostolos H. Karantanas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Diagnostics</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 3, p 692</subfield><subfield code="w">(DE-627)718627814</subfield><subfield code="w">(DE-600)2662336-5</subfield><subfield code="x">20754418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 692</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/diagnostics12030692</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/38086c3597a745d686048007ac6324f0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4418/12/3/692</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 692</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Evangelia G. Chryssou |
spellingShingle |
Evangelia G. Chryssou misc R5-920 misc endometrial carcinoma misc MR imaging/diagnosis misc diffusion weighted imaging misc intravoxel incoherent motion misc tumor grade misc histogram analysis misc Medicine (General) Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI |
authorStr |
Evangelia G. Chryssou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R5-920 |
illustrated |
Not Illustrated |
issn |
20754418 |
topic_title |
R5-920 Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI endometrial carcinoma MR imaging/diagnosis diffusion weighted imaging intravoxel incoherent motion tumor grade histogram analysis |
topic |
misc R5-920 misc endometrial carcinoma misc MR imaging/diagnosis misc diffusion weighted imaging misc intravoxel incoherent motion misc tumor grade misc histogram analysis misc Medicine (General) |
topic_unstemmed |
misc R5-920 misc endometrial carcinoma misc MR imaging/diagnosis misc diffusion weighted imaging misc intravoxel incoherent motion misc tumor grade misc histogram analysis misc Medicine (General) |
topic_browse |
misc R5-920 misc endometrial carcinoma misc MR imaging/diagnosis misc diffusion weighted imaging misc intravoxel incoherent motion misc tumor grade misc histogram analysis misc Medicine (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Diagnostics |
hierarchy_parent_id |
718627814 |
hierarchy_top_title |
Diagnostics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627814 (DE-600)2662336-5 |
title |
Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI |
ctrlnum |
(DE-627)DOAJ030252334 (DE-599)DOAJ38086c3597a745d686048007ac6324f0 |
title_full |
Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI |
author_sort |
Evangelia G. Chryssou |
journal |
Diagnostics |
journalStr |
Diagnostics |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Evangelia G. Chryssou Georgios C. Manikis Georgios S. Ioannidis Vrettos Chaniotis Thomas Vrekoussis Thomas G. Maris Kostas Marias Apostolos H. Karantanas |
container_volume |
12 |
class |
R5-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Evangelia G. Chryssou |
doi_str_mv |
10.3390/diagnostics12030692 |
author2-role |
verfasserin |
title_sort |
diffusion weighted imaging in the assessment of tumor grade in endometrial cancer based on intravoxel incoherent motion mri |
callnumber |
R5-920 |
title_auth |
Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI |
abstract |
The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors. |
abstractGer |
The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors. |
abstract_unstemmed |
The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 692 |
title_short |
Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI |
url |
https://doi.org/10.3390/diagnostics12030692 https://doaj.org/article/38086c3597a745d686048007ac6324f0 https://www.mdpi.com/2075-4418/12/3/692 https://doaj.org/toc/2075-4418 |
remote_bool |
true |
author2 |
Georgios C. Manikis Georgios S. Ioannidis Vrettos Chaniotis Thomas Vrekoussis Thomas G. Maris Kostas Marias Apostolos H. Karantanas |
author2Str |
Georgios C. Manikis Georgios S. Ioannidis Vrettos Chaniotis Thomas Vrekoussis Thomas G. Maris Kostas Marias Apostolos H. Karantanas |
ppnlink |
718627814 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/diagnostics12030692 |
callnumber-a |
R5-920 |
up_date |
2024-07-03T13:53:05.726Z |
_version_ |
1803566223959523328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030252334</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414175136.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/diagnostics12030692</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030252334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ38086c3597a745d686048007ac6324f0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Evangelia G. Chryssou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusion Weighted Imaging in the Assessment of Tumor Grade in Endometrial Cancer Based on Intravoxel Incoherent Motion MRI</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this study is to investigate the possibility of predicting histological grade in patients with endometrial cancer on the basis of intravoxel incoherent motion (IVIM)-related histogram analysis parameters. This prospective study included 52 women with endometrial cancer (EC) who underwent MR imaging as initial staging in our hospital, allocated into low-grade (G1 and G2) and high-grade (G3) tumors according to the pathology reports. Regions of interest (ROIs) were drawn on the diffusion weighted images and apparent diffusion coefficient (ADC), true diffusivity (D), and perfusion fraction (f) using diffusion models were computed. Mean, median, skewness, kurtosis, and interquartile range (IQR) were calculated from the whole-tumor histogram. The IQR of the diffusion coefficient (D) was significantly lower in the low-grade tumors from that of the high-grade group with an adjusted <i<p</i<-value of less than 5% (0.048). The ROC curve analysis results of the statistically significant IQR of the D yielded an accuracy, sensitivity, and specificity of 74.5%, 70.1%, and 76.5% respectively, for discriminating low from high-grade tumors, with an optimal cutoff of 0.206 (×10<sup<−3</sup< mm<sup<2</sup</s) and an AUC of 75.4% (95% CI: 62.1 to 88.8). The IVIM modeling coupled with histogram analysis techniques is promising for preoperative differentiation between low- and high-grade EC tumors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">endometrial carcinoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MR imaging/diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diffusion weighted imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intravoxel incoherent motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tumor grade</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">histogram analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios C. Manikis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georgios S. Ioannidis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vrettos Chaniotis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Vrekoussis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas G. Maris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kostas Marias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Apostolos H. Karantanas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Diagnostics</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 3, p 692</subfield><subfield code="w">(DE-627)718627814</subfield><subfield code="w">(DE-600)2662336-5</subfield><subfield code="x">20754418</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 692</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/diagnostics12030692</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/38086c3597a745d686048007ac6324f0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4418/12/3/692</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 692</subfield></datafield></record></collection>
|
score |
7.402647 |