Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites
Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial...
Ausführliche Beschreibung
Autor*in: |
Qingchao Zhou [verfasserIn] Chengsi Wang [verfasserIn] Andy-Hsitien Shen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Minerals - MDPI AG, 2012, 12(2022), 8, p 920 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:8, p 920 |
Links: |
---|
DOI / URN: |
10.3390/min12080920 |
---|
Katalog-ID: |
DOAJ030335426 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030335426 | ||
003 | DE-627 | ||
005 | 20240414134032.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/min12080920 |2 doi | |
035 | |a (DE-627)DOAJ030335426 | ||
035 | |a (DE-599)DOAJ03c4263e16274741afeff4894522af26 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE351-399.2 | |
100 | 0 | |a Qingchao Zhou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed. | ||
650 | 4 | |a labradorite | |
650 | 4 | |a faceted | |
650 | 4 | |a copper diffusion | |
650 | 4 | |a recoloring | |
653 | 0 | |a Mineralogy | |
700 | 0 | |a Chengsi Wang |e verfasserin |4 aut | |
700 | 0 | |a Andy-Hsitien Shen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Minerals |d MDPI AG, 2012 |g 12(2022), 8, p 920 |w (DE-627)689132069 |w (DE-600)2655947-X |x 2075163X |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:8, p 920 |
856 | 4 | 0 | |u https://doi.org/10.3390/min12080920 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/03c4263e16274741afeff4894522af26 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-163X/12/8/920 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-163X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 8, p 920 |
author_variant |
q z qz c w cw a h s ahs |
---|---|
matchkey_str |
article:2075163X:2022----::plctoohgtmeaueoprifsoisraeeooi |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QE |
publishDate |
2022 |
allfields |
10.3390/min12080920 doi (DE-627)DOAJ030335426 (DE-599)DOAJ03c4263e16274741afeff4894522af26 DE-627 ger DE-627 rakwb eng QE351-399.2 Qingchao Zhou verfasserin aut Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed. labradorite faceted copper diffusion recoloring Mineralogy Chengsi Wang verfasserin aut Andy-Hsitien Shen verfasserin aut In Minerals MDPI AG, 2012 12(2022), 8, p 920 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:8, p 920 https://doi.org/10.3390/min12080920 kostenfrei https://doaj.org/article/03c4263e16274741afeff4894522af26 kostenfrei https://www.mdpi.com/2075-163X/12/8/920 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 8, p 920 |
spelling |
10.3390/min12080920 doi (DE-627)DOAJ030335426 (DE-599)DOAJ03c4263e16274741afeff4894522af26 DE-627 ger DE-627 rakwb eng QE351-399.2 Qingchao Zhou verfasserin aut Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed. labradorite faceted copper diffusion recoloring Mineralogy Chengsi Wang verfasserin aut Andy-Hsitien Shen verfasserin aut In Minerals MDPI AG, 2012 12(2022), 8, p 920 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:8, p 920 https://doi.org/10.3390/min12080920 kostenfrei https://doaj.org/article/03c4263e16274741afeff4894522af26 kostenfrei https://www.mdpi.com/2075-163X/12/8/920 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 8, p 920 |
allfields_unstemmed |
10.3390/min12080920 doi (DE-627)DOAJ030335426 (DE-599)DOAJ03c4263e16274741afeff4894522af26 DE-627 ger DE-627 rakwb eng QE351-399.2 Qingchao Zhou verfasserin aut Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed. labradorite faceted copper diffusion recoloring Mineralogy Chengsi Wang verfasserin aut Andy-Hsitien Shen verfasserin aut In Minerals MDPI AG, 2012 12(2022), 8, p 920 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:8, p 920 https://doi.org/10.3390/min12080920 kostenfrei https://doaj.org/article/03c4263e16274741afeff4894522af26 kostenfrei https://www.mdpi.com/2075-163X/12/8/920 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 8, p 920 |
allfieldsGer |
10.3390/min12080920 doi (DE-627)DOAJ030335426 (DE-599)DOAJ03c4263e16274741afeff4894522af26 DE-627 ger DE-627 rakwb eng QE351-399.2 Qingchao Zhou verfasserin aut Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed. labradorite faceted copper diffusion recoloring Mineralogy Chengsi Wang verfasserin aut Andy-Hsitien Shen verfasserin aut In Minerals MDPI AG, 2012 12(2022), 8, p 920 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:8, p 920 https://doi.org/10.3390/min12080920 kostenfrei https://doaj.org/article/03c4263e16274741afeff4894522af26 kostenfrei https://www.mdpi.com/2075-163X/12/8/920 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 8, p 920 |
allfieldsSound |
10.3390/min12080920 doi (DE-627)DOAJ030335426 (DE-599)DOAJ03c4263e16274741afeff4894522af26 DE-627 ger DE-627 rakwb eng QE351-399.2 Qingchao Zhou verfasserin aut Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed. labradorite faceted copper diffusion recoloring Mineralogy Chengsi Wang verfasserin aut Andy-Hsitien Shen verfasserin aut In Minerals MDPI AG, 2012 12(2022), 8, p 920 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:8, p 920 https://doi.org/10.3390/min12080920 kostenfrei https://doaj.org/article/03c4263e16274741afeff4894522af26 kostenfrei https://www.mdpi.com/2075-163X/12/8/920 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 8, p 920 |
language |
English |
source |
In Minerals 12(2022), 8, p 920 volume:12 year:2022 number:8, p 920 |
sourceStr |
In Minerals 12(2022), 8, p 920 volume:12 year:2022 number:8, p 920 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
labradorite faceted copper diffusion recoloring Mineralogy |
isfreeaccess_bool |
true |
container_title |
Minerals |
authorswithroles_txt_mv |
Qingchao Zhou @@aut@@ Chengsi Wang @@aut@@ Andy-Hsitien Shen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
689132069 |
id |
DOAJ030335426 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030335426</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414134032.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min12080920</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030335426</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ03c4263e16274741afeff4894522af26</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qingchao Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">labradorite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">faceted</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">copper diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recoloring</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengsi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andy-Hsitien Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 8, p 920</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 920</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min12080920</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/03c4263e16274741afeff4894522af26</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/12/8/920</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 920</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Qingchao Zhou |
spellingShingle |
Qingchao Zhou misc QE351-399.2 misc labradorite misc faceted misc copper diffusion misc recoloring misc Mineralogy Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites |
authorStr |
Qingchao Zhou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689132069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE351-399 |
illustrated |
Not Illustrated |
issn |
2075163X |
topic_title |
QE351-399.2 Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites labradorite faceted copper diffusion recoloring |
topic |
misc QE351-399.2 misc labradorite misc faceted misc copper diffusion misc recoloring misc Mineralogy |
topic_unstemmed |
misc QE351-399.2 misc labradorite misc faceted misc copper diffusion misc recoloring misc Mineralogy |
topic_browse |
misc QE351-399.2 misc labradorite misc faceted misc copper diffusion misc recoloring misc Mineralogy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Minerals |
hierarchy_parent_id |
689132069 |
hierarchy_top_title |
Minerals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689132069 (DE-600)2655947-X |
title |
Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites |
ctrlnum |
(DE-627)DOAJ030335426 (DE-599)DOAJ03c4263e16274741afeff4894522af26 |
title_full |
Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites |
author_sort |
Qingchao Zhou |
journal |
Minerals |
journalStr |
Minerals |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Qingchao Zhou Chengsi Wang Andy-Hsitien Shen |
container_volume |
12 |
class |
QE351-399.2 |
format_se |
Elektronische Aufsätze |
author-letter |
Qingchao Zhou |
doi_str_mv |
10.3390/min12080920 |
author2-role |
verfasserin |
title_sort |
application of high-temperature copper diffusion in surface recoloring of faceted labradorites |
callnumber |
QE351-399.2 |
title_auth |
Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites |
abstract |
Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed. |
abstractGer |
Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed. |
abstract_unstemmed |
Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 920 |
title_short |
Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites |
url |
https://doi.org/10.3390/min12080920 https://doaj.org/article/03c4263e16274741afeff4894522af26 https://www.mdpi.com/2075-163X/12/8/920 https://doaj.org/toc/2075-163X |
remote_bool |
true |
author2 |
Chengsi Wang Andy-Hsitien Shen |
author2Str |
Chengsi Wang Andy-Hsitien Shen |
ppnlink |
689132069 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/min12080920 |
callnumber-a |
QE351-399.2 |
up_date |
2024-07-03T14:23:01.334Z |
_version_ |
1803568106792026112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030335426</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414134032.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min12080920</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030335426</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ03c4263e16274741afeff4894522af26</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qingchao Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of High-Temperature Copper Diffusion in Surface Recoloring of Faceted Labradorites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Owing to the high market values of natural sunstones in Oregon, a kind of artificially diffused red feldspar exhibited at the Tucson Exhibition at the beginning of this century, whose color origin is the same as that of natural sunstone (copper nanoparticles). However, the details of the artificial diffusion process are less disclosed, there is no systematic method to obtain such gemstones. In this paper, we developed the high-temperature copper diffusion process for the surface recoloring of faceted labradorites, which are partly buried in the diffusant. By optimizing the experimental parameters of high-temperature copper diffusion, we successfully recolored the faceted labradorites to red and light red. The gemological and spectroscopic characteristics of the recolored faceted labradorite were further characterized. The red and light-red faceted labradorites exhibited the unique surface plasmon resonance absorption peaks of copper nanoparticles near 580 nm, which is the origin of red color. The typical inclusions formed in the faceted labradorite is in the shape of “fire cloud”. The interface of red and light-red faceted labradorite that is in contact with the diffusant is less contaminated, we believe that the contamination could be further reduced or eliminated by optimizing the high-temperature copper diffusion process. The way that the sample is in contact with the diffusant partly is versatile and promising in the surface treatment of materials that have already been processed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">labradorite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">faceted</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">copper diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recoloring</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengsi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andy-Hsitien Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 8, p 920</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 920</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min12080920</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/03c4263e16274741afeff4894522af26</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/12/8/920</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 920</subfield></datafield></record></collection>
|
score |
7.401457 |