Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion
Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by spe...
Ausführliche Beschreibung
Autor*in: |
Gabrielle Dunkle [verfasserIn] Shangyan Zou [verfasserIn] Bryson Robertson [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 3, p 1109 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:3, p 1109 |
Links: |
---|
DOI / URN: |
10.3390/en15031109 |
---|
Katalog-ID: |
DOAJ030353645 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030353645 | ||
003 | DE-627 | ||
005 | 20240414204048.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15031109 |2 doi | |
035 | |a (DE-627)DOAJ030353645 | ||
035 | |a (DE-599)DOAJ366bc1885ca348da8eb7712a48e62c59 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Gabrielle Dunkle |e verfasserin |4 aut | |
245 | 1 | 0 | |a Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively. | ||
650 | 4 | |a wave energy converters | |
650 | 4 | |a wave resource assessments | |
650 | 4 | |a marine renewable energy | |
650 | 4 | |a net power assessment (NPA) | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Shangyan Zou |e verfasserin |4 aut | |
700 | 0 | |a Bryson Robertson |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 3, p 1109 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:3, p 1109 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15031109 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/366bc1885ca348da8eb7712a48e62c59 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/3/1109 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 3, p 1109 |
author_variant |
g d gd s z sz b r br |
---|---|
matchkey_str |
article:19961073:2022----::aeeoresesetsaitmoaipcsfeszadaep |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15031109 doi (DE-627)DOAJ030353645 (DE-599)DOAJ366bc1885ca348da8eb7712a48e62c59 DE-627 ger DE-627 rakwb eng Gabrielle Dunkle verfasserin aut Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively. wave energy converters wave resource assessments marine renewable energy net power assessment (NPA) Technology T Shangyan Zou verfasserin aut Bryson Robertson verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 1109 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 1109 https://doi.org/10.3390/en15031109 kostenfrei https://doaj.org/article/366bc1885ca348da8eb7712a48e62c59 kostenfrei https://www.mdpi.com/1996-1073/15/3/1109 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 1109 |
spelling |
10.3390/en15031109 doi (DE-627)DOAJ030353645 (DE-599)DOAJ366bc1885ca348da8eb7712a48e62c59 DE-627 ger DE-627 rakwb eng Gabrielle Dunkle verfasserin aut Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively. wave energy converters wave resource assessments marine renewable energy net power assessment (NPA) Technology T Shangyan Zou verfasserin aut Bryson Robertson verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 1109 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 1109 https://doi.org/10.3390/en15031109 kostenfrei https://doaj.org/article/366bc1885ca348da8eb7712a48e62c59 kostenfrei https://www.mdpi.com/1996-1073/15/3/1109 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 1109 |
allfields_unstemmed |
10.3390/en15031109 doi (DE-627)DOAJ030353645 (DE-599)DOAJ366bc1885ca348da8eb7712a48e62c59 DE-627 ger DE-627 rakwb eng Gabrielle Dunkle verfasserin aut Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively. wave energy converters wave resource assessments marine renewable energy net power assessment (NPA) Technology T Shangyan Zou verfasserin aut Bryson Robertson verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 1109 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 1109 https://doi.org/10.3390/en15031109 kostenfrei https://doaj.org/article/366bc1885ca348da8eb7712a48e62c59 kostenfrei https://www.mdpi.com/1996-1073/15/3/1109 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 1109 |
allfieldsGer |
10.3390/en15031109 doi (DE-627)DOAJ030353645 (DE-599)DOAJ366bc1885ca348da8eb7712a48e62c59 DE-627 ger DE-627 rakwb eng Gabrielle Dunkle verfasserin aut Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively. wave energy converters wave resource assessments marine renewable energy net power assessment (NPA) Technology T Shangyan Zou verfasserin aut Bryson Robertson verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 1109 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 1109 https://doi.org/10.3390/en15031109 kostenfrei https://doaj.org/article/366bc1885ca348da8eb7712a48e62c59 kostenfrei https://www.mdpi.com/1996-1073/15/3/1109 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 1109 |
allfieldsSound |
10.3390/en15031109 doi (DE-627)DOAJ030353645 (DE-599)DOAJ366bc1885ca348da8eb7712a48e62c59 DE-627 ger DE-627 rakwb eng Gabrielle Dunkle verfasserin aut Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively. wave energy converters wave resource assessments marine renewable energy net power assessment (NPA) Technology T Shangyan Zou verfasserin aut Bryson Robertson verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 1109 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 1109 https://doi.org/10.3390/en15031109 kostenfrei https://doaj.org/article/366bc1885ca348da8eb7712a48e62c59 kostenfrei https://www.mdpi.com/1996-1073/15/3/1109 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 1109 |
language |
English |
source |
In Energies 15(2022), 3, p 1109 volume:15 year:2022 number:3, p 1109 |
sourceStr |
In Energies 15(2022), 3, p 1109 volume:15 year:2022 number:3, p 1109 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wave energy converters wave resource assessments marine renewable energy net power assessment (NPA) Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Gabrielle Dunkle @@aut@@ Shangyan Zou @@aut@@ Bryson Robertson @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ030353645 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030353645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204048.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15031109</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030353645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ366bc1885ca348da8eb7712a48e62c59</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gabrielle Dunkle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wave energy converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wave resource assessments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marine renewable energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">net power assessment (NPA)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shangyan Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bryson Robertson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 3, p 1109</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 1109</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15031109</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/366bc1885ca348da8eb7712a48e62c59</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/3/1109</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 1109</subfield></datafield></record></collection>
|
author |
Gabrielle Dunkle |
spellingShingle |
Gabrielle Dunkle misc wave energy converters misc wave resource assessments misc marine renewable energy misc net power assessment (NPA) misc Technology misc T Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion |
authorStr |
Gabrielle Dunkle |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion wave energy converters wave resource assessments marine renewable energy net power assessment (NPA) |
topic |
misc wave energy converters misc wave resource assessments misc marine renewable energy misc net power assessment (NPA) misc Technology misc T |
topic_unstemmed |
misc wave energy converters misc wave resource assessments misc marine renewable energy misc net power assessment (NPA) misc Technology misc T |
topic_browse |
misc wave energy converters misc wave resource assessments misc marine renewable energy misc net power assessment (NPA) misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion |
ctrlnum |
(DE-627)DOAJ030353645 (DE-599)DOAJ366bc1885ca348da8eb7712a48e62c59 |
title_full |
Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion |
author_sort |
Gabrielle Dunkle |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Gabrielle Dunkle Shangyan Zou Bryson Robertson |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Gabrielle Dunkle |
doi_str_mv |
10.3390/en15031109 |
author2-role |
verfasserin |
title_sort |
wave resource assessments: spatiotemporal impacts of wec size and wave spectra on power conversion |
title_auth |
Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion |
abstract |
Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively. |
abstractGer |
Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively. |
abstract_unstemmed |
Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 1109 |
title_short |
Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion |
url |
https://doi.org/10.3390/en15031109 https://doaj.org/article/366bc1885ca348da8eb7712a48e62c59 https://www.mdpi.com/1996-1073/15/3/1109 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Shangyan Zou Bryson Robertson |
author2Str |
Shangyan Zou Bryson Robertson |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15031109 |
up_date |
2024-07-03T14:29:56.839Z |
_version_ |
1803568542477451264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030353645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204048.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15031109</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030353645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ366bc1885ca348da8eb7712a48e62c59</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gabrielle Dunkle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wave Resource Assessments: Spatiotemporal Impacts of WEC Size and Wave Spectra on Power Conversion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wave energy has the potential to power significant portions of economies around the world. Standard International Electrotechnical Commission methods for determining wave energy quantifies the gross wave resource available in the ocean, yet a significant portion of this resource is not usable by specific wave energy converters (WECs). This can provide a misleading assessment of the spatiotemporal opportunities for wave energy in deployment locations. Therefore, there is a need to develop a new technique to assess potential wave power from a device point of view that is generally applicable across WEC sizes. To address this challenge, a novel net power assessment methodology is proposed, which implements Budal’s upper bound (which describes the power available to a WEC based on its stroke), the radiation power limit (which describes the maximum radiation-based amount of wave power a WEC can absorb), and total gross incident wave power as absorbable power upper bounds. Spatiotemporal opportunities for WECs were re-evaluated based on this new technique. Numerical simulations were conducted to quantify the net wave resource available for different sized WECs (1, 2, 5, 10) at five different ocean sites in the U.S. based on wave data. The simulation results show the predicted potential wave power through the net power assessment for a 5 m device is 0.8% of the International Electrotechnical Commission assessment results at PacWave, Oregon. For the monthly average power, the results show PacWave has the most energetic wave resource (up to 406 kW in January) and WETS, Hawaii, has the steadiest wave power available (maximum COV of 0.8) among the sites. Regarding the size of the devices, results show that larger devices (e.g., 10 m) have better performance in terms of both magnitude and steadiness of power available at WETS and Los Angeles, California. Finally, the wave power potential of different sized WECs at varying locations was compared at a 3-h resolution. The maximum instantaneous power available for a 1 and 10 m device at PacWave throughout the time period was 47.8 and 3.52 × 10<sup<3</sup< kW, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wave energy converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wave resource assessments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marine renewable energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">net power assessment (NPA)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shangyan Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bryson Robertson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 3, p 1109</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 1109</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15031109</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/366bc1885ca348da8eb7712a48e62c59</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/3/1109</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 1109</subfield></datafield></record></collection>
|
score |
7.3988447 |