Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<)
Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiol...
Ausführliche Beschreibung
Autor*in: |
Binghua Liu [verfasserIn] Haishen Wen [verfasserIn] Jun Yang [verfasserIn] Xiaohui Li [verfasserIn] Guangling Li [verfasserIn] Jingru Zhang [verfasserIn] Shuxian Wu [verfasserIn] Ian AE Butts [verfasserIn] Feng He [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Biology - MDPI AG, 2012, 11(2022), 8, p 1233 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:8, p 1233 |
Links: |
---|
DOI / URN: |
10.3390/biology11081233 |
---|
Katalog-ID: |
DOAJ030382254 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030382254 | ||
003 | DE-627 | ||
005 | 20240414121235.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/biology11081233 |2 doi | |
035 | |a (DE-627)DOAJ030382254 | ||
035 | |a (DE-599)DOAJf92b0880147841b58b945b99cc072ba7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Binghua Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture. | ||
650 | 4 | |a hypoxia stress | |
650 | 4 | |a Japanese flounder | |
650 | 4 | |a physiological response | |
650 | 4 | |a transcriptional regulation | |
650 | 4 | |a epigenetic modification | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Haishen Wen |e verfasserin |4 aut | |
700 | 0 | |a Jun Yang |e verfasserin |4 aut | |
700 | 0 | |a Xiaohui Li |e verfasserin |4 aut | |
700 | 0 | |a Guangling Li |e verfasserin |4 aut | |
700 | 0 | |a Jingru Zhang |e verfasserin |4 aut | |
700 | 0 | |a Shuxian Wu |e verfasserin |4 aut | |
700 | 0 | |a Ian AE Butts |e verfasserin |4 aut | |
700 | 0 | |a Feng He |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Biology |d MDPI AG, 2012 |g 11(2022), 8, p 1233 |w (DE-627)718622073 |w (DE-600)2661517-4 |x 20797737 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:8, p 1233 |
856 | 4 | 0 | |u https://doi.org/10.3390/biology11081233 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f92b0880147841b58b945b99cc072ba7 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-7737/11/8/1233 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-7737 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 8, p 1233 |
author_variant |
b l bl h w hw j y jy x l xl g l gl j z jz s w sw i a b iab f h fh |
---|---|
matchkey_str |
article:20797737:2022----::yoiafcsi1dainlnptwyyehltomdfctoadrncitoargltoijpn |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.3390/biology11081233 doi (DE-627)DOAJ030382254 (DE-599)DOAJf92b0880147841b58b945b99cc072ba7 DE-627 ger DE-627 rakwb eng QH301-705.5 Binghua Liu verfasserin aut Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture. hypoxia stress Japanese flounder physiological response transcriptional regulation epigenetic modification Biology (General) Haishen Wen verfasserin aut Jun Yang verfasserin aut Xiaohui Li verfasserin aut Guangling Li verfasserin aut Jingru Zhang verfasserin aut Shuxian Wu verfasserin aut Ian AE Butts verfasserin aut Feng He verfasserin aut In Biology MDPI AG, 2012 11(2022), 8, p 1233 (DE-627)718622073 (DE-600)2661517-4 20797737 nnns volume:11 year:2022 number:8, p 1233 https://doi.org/10.3390/biology11081233 kostenfrei https://doaj.org/article/f92b0880147841b58b945b99cc072ba7 kostenfrei https://www.mdpi.com/2079-7737/11/8/1233 kostenfrei https://doaj.org/toc/2079-7737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 8, p 1233 |
spelling |
10.3390/biology11081233 doi (DE-627)DOAJ030382254 (DE-599)DOAJf92b0880147841b58b945b99cc072ba7 DE-627 ger DE-627 rakwb eng QH301-705.5 Binghua Liu verfasserin aut Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture. hypoxia stress Japanese flounder physiological response transcriptional regulation epigenetic modification Biology (General) Haishen Wen verfasserin aut Jun Yang verfasserin aut Xiaohui Li verfasserin aut Guangling Li verfasserin aut Jingru Zhang verfasserin aut Shuxian Wu verfasserin aut Ian AE Butts verfasserin aut Feng He verfasserin aut In Biology MDPI AG, 2012 11(2022), 8, p 1233 (DE-627)718622073 (DE-600)2661517-4 20797737 nnns volume:11 year:2022 number:8, p 1233 https://doi.org/10.3390/biology11081233 kostenfrei https://doaj.org/article/f92b0880147841b58b945b99cc072ba7 kostenfrei https://www.mdpi.com/2079-7737/11/8/1233 kostenfrei https://doaj.org/toc/2079-7737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 8, p 1233 |
allfields_unstemmed |
10.3390/biology11081233 doi (DE-627)DOAJ030382254 (DE-599)DOAJf92b0880147841b58b945b99cc072ba7 DE-627 ger DE-627 rakwb eng QH301-705.5 Binghua Liu verfasserin aut Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture. hypoxia stress Japanese flounder physiological response transcriptional regulation epigenetic modification Biology (General) Haishen Wen verfasserin aut Jun Yang verfasserin aut Xiaohui Li verfasserin aut Guangling Li verfasserin aut Jingru Zhang verfasserin aut Shuxian Wu verfasserin aut Ian AE Butts verfasserin aut Feng He verfasserin aut In Biology MDPI AG, 2012 11(2022), 8, p 1233 (DE-627)718622073 (DE-600)2661517-4 20797737 nnns volume:11 year:2022 number:8, p 1233 https://doi.org/10.3390/biology11081233 kostenfrei https://doaj.org/article/f92b0880147841b58b945b99cc072ba7 kostenfrei https://www.mdpi.com/2079-7737/11/8/1233 kostenfrei https://doaj.org/toc/2079-7737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 8, p 1233 |
allfieldsGer |
10.3390/biology11081233 doi (DE-627)DOAJ030382254 (DE-599)DOAJf92b0880147841b58b945b99cc072ba7 DE-627 ger DE-627 rakwb eng QH301-705.5 Binghua Liu verfasserin aut Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture. hypoxia stress Japanese flounder physiological response transcriptional regulation epigenetic modification Biology (General) Haishen Wen verfasserin aut Jun Yang verfasserin aut Xiaohui Li verfasserin aut Guangling Li verfasserin aut Jingru Zhang verfasserin aut Shuxian Wu verfasserin aut Ian AE Butts verfasserin aut Feng He verfasserin aut In Biology MDPI AG, 2012 11(2022), 8, p 1233 (DE-627)718622073 (DE-600)2661517-4 20797737 nnns volume:11 year:2022 number:8, p 1233 https://doi.org/10.3390/biology11081233 kostenfrei https://doaj.org/article/f92b0880147841b58b945b99cc072ba7 kostenfrei https://www.mdpi.com/2079-7737/11/8/1233 kostenfrei https://doaj.org/toc/2079-7737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 8, p 1233 |
allfieldsSound |
10.3390/biology11081233 doi (DE-627)DOAJ030382254 (DE-599)DOAJf92b0880147841b58b945b99cc072ba7 DE-627 ger DE-627 rakwb eng QH301-705.5 Binghua Liu verfasserin aut Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture. hypoxia stress Japanese flounder physiological response transcriptional regulation epigenetic modification Biology (General) Haishen Wen verfasserin aut Jun Yang verfasserin aut Xiaohui Li verfasserin aut Guangling Li verfasserin aut Jingru Zhang verfasserin aut Shuxian Wu verfasserin aut Ian AE Butts verfasserin aut Feng He verfasserin aut In Biology MDPI AG, 2012 11(2022), 8, p 1233 (DE-627)718622073 (DE-600)2661517-4 20797737 nnns volume:11 year:2022 number:8, p 1233 https://doi.org/10.3390/biology11081233 kostenfrei https://doaj.org/article/f92b0880147841b58b945b99cc072ba7 kostenfrei https://www.mdpi.com/2079-7737/11/8/1233 kostenfrei https://doaj.org/toc/2079-7737 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 8, p 1233 |
language |
English |
source |
In Biology 11(2022), 8, p 1233 volume:11 year:2022 number:8, p 1233 |
sourceStr |
In Biology 11(2022), 8, p 1233 volume:11 year:2022 number:8, p 1233 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hypoxia stress Japanese flounder physiological response transcriptional regulation epigenetic modification Biology (General) |
isfreeaccess_bool |
true |
container_title |
Biology |
authorswithroles_txt_mv |
Binghua Liu @@aut@@ Haishen Wen @@aut@@ Jun Yang @@aut@@ Xiaohui Li @@aut@@ Guangling Li @@aut@@ Jingru Zhang @@aut@@ Shuxian Wu @@aut@@ Ian AE Butts @@aut@@ Feng He @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718622073 |
id |
DOAJ030382254 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030382254</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414121235.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/biology11081233</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030382254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf92b0880147841b58b945b99cc072ba7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Binghua Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypoxia stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Japanese flounder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physiological response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptional regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epigenetic modification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haishen Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohui Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangling Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingru Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuxian Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian AE Butts</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biology</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2022), 8, p 1233</subfield><subfield code="w">(DE-627)718622073</subfield><subfield code="w">(DE-600)2661517-4</subfield><subfield code="x">20797737</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 1233</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/biology11081233</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f92b0880147841b58b945b99cc072ba7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-7737/11/8/1233</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-7737</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 1233</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Binghua Liu |
spellingShingle |
Binghua Liu misc QH301-705.5 misc hypoxia stress misc Japanese flounder misc physiological response misc transcriptional regulation misc epigenetic modification misc Biology (General) Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) |
authorStr |
Binghua Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718622073 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
20797737 |
topic_title |
QH301-705.5 Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) hypoxia stress Japanese flounder physiological response transcriptional regulation epigenetic modification |
topic |
misc QH301-705.5 misc hypoxia stress misc Japanese flounder misc physiological response misc transcriptional regulation misc epigenetic modification misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc hypoxia stress misc Japanese flounder misc physiological response misc transcriptional regulation misc epigenetic modification misc Biology (General) |
topic_browse |
misc QH301-705.5 misc hypoxia stress misc Japanese flounder misc physiological response misc transcriptional regulation misc epigenetic modification misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biology |
hierarchy_parent_id |
718622073 |
hierarchy_top_title |
Biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718622073 (DE-600)2661517-4 |
title |
Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) |
ctrlnum |
(DE-627)DOAJ030382254 (DE-599)DOAJf92b0880147841b58b945b99cc072ba7 |
title_full |
Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) |
author_sort |
Binghua Liu |
journal |
Biology |
journalStr |
Biology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Binghua Liu Haishen Wen Jun Yang Xiaohui Li Guangling Li Jingru Zhang Shuxian Wu Ian AE Butts Feng He |
container_volume |
11 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Binghua Liu |
doi_str_mv |
10.3390/biology11081233 |
author2-role |
verfasserin |
title_sort |
hypoxia affects hif-1/ldh-a signaling pathway by methylation modification and transcriptional regulation in japanese flounder (<i<paralichthys olivaceus</i<) |
callnumber |
QH301-705.5 |
title_auth |
Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) |
abstract |
Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture. |
abstractGer |
Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture. |
abstract_unstemmed |
Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 1233 |
title_short |
Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<) |
url |
https://doi.org/10.3390/biology11081233 https://doaj.org/article/f92b0880147841b58b945b99cc072ba7 https://www.mdpi.com/2079-7737/11/8/1233 https://doaj.org/toc/2079-7737 |
remote_bool |
true |
author2 |
Haishen Wen Jun Yang Xiaohui Li Guangling Li Jingru Zhang Shuxian Wu Ian AE Butts Feng He |
author2Str |
Haishen Wen Jun Yang Xiaohui Li Guangling Li Jingru Zhang Shuxian Wu Ian AE Butts Feng He |
ppnlink |
718622073 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/biology11081233 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T14:40:34.781Z |
_version_ |
1803569211414413312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030382254</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414121235.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/biology11081233</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030382254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf92b0880147841b58b945b99cc072ba7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Binghua Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypoxia Affects HIF-1/LDH-A Signaling Pathway by Methylation Modification and Transcriptional Regulation in Japanese Flounder (<i<Paralichthys olivaceus</i<)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Japanese flounder (<i<Paralichthys olivaceus</i<) responsive mechanisms to hypoxia are still not fully understood. Therefore, we performed an acute hypoxic treatment (dissolved oxygen at 2.07 ± 0.08 mg/L) on Japanese flounder. It was confirmed that the hypoxic stress affected the physiological phenotype through changes in blood physiology (RBC, HGB, WBC), biochemistry (LDH, ALP, ALT, GLU, TC, TG, ALB), and hormone (cortisol) indicators. Hypoxia inducible factor-1 (HIF-1), an essential oxygen homeostasis mediator in organisms consisting of an inducible HIF-1α and a constitutive HIF-1β, and its target gene <i<LDH-A</i< were deeply studied. Results showed that <i<HIF-1α</i< and <i<LDH-A</i< genes were co-expressed and significantly affected by hypoxic stress. The dual-luciferase reporter assay confirmed that transcription factor HIF-1 transcriptionally regulated the <i<LDH-A</i< gene, and its transcription binding sequence was GGACGTGA located at −2343~−2336. The DNA methylation status of <i<HIF-1α</i< and <i<LDH-A</i< genes were detected to understand the mechanism of environmental stress on genes. It was found that hypoxia affected the <i<HIF-1α</i< gene and <i<LDH-A</i< gene methylation levels. The study uncovered HIF-1/LDH-A signaling pathway responsive mechanisms of Japanese flounder to hypoxia in epigenetic modification and transcriptional regulation. Our study is significant to further the understanding of environmental responsive mechanisms as well as providing a reference for aquaculture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypoxia stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Japanese flounder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physiological response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptional regulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epigenetic modification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haishen Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohui Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangling Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingru Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuxian Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian AE Butts</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biology</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2022), 8, p 1233</subfield><subfield code="w">(DE-627)718622073</subfield><subfield code="w">(DE-600)2661517-4</subfield><subfield code="x">20797737</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 1233</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/biology11081233</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f92b0880147841b58b945b99cc072ba7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-7737/11/8/1233</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-7737</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 1233</subfield></datafield></record></collection>
|
score |
7.399081 |