Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment
Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the...
Ausführliche Beschreibung
Autor*in: |
Lucia Cattani [verfasserIn] Paolo Cattani [verfasserIn] Anna Magrini [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 14(2021), 14, p 4271 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2021 ; number:14, p 4271 |
Links: |
---|
DOI / URN: |
10.3390/en14144271 |
---|
Katalog-ID: |
DOAJ030407818 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030407818 | ||
003 | DE-627 | ||
005 | 20240412170150.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en14144271 |2 doi | |
035 | |a (DE-627)DOAJ030407818 | ||
035 | |a (DE-599)DOAJ7cdb9fed13164381a97264e6be1b5f92 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Lucia Cattani |e verfasserin |4 aut | |
245 | 1 | 0 | |a Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology. | ||
650 | 4 | |a atmospheric water condensation | |
650 | 4 | |a air water generator | |
650 | 4 | |a photovoltaic cleaning | |
650 | 4 | |a panel cleaning optimization | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Paolo Cattani |e verfasserin |4 aut | |
700 | 0 | |a Anna Magrini |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 14(2021), 14, p 4271 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2021 |g number:14, p 4271 |
856 | 4 | 0 | |u https://doi.org/10.3390/en14144271 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7cdb9fed13164381a97264e6be1b5f92 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/14/14/4271 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2021 |e 14, p 4271 |
author_variant |
l c lc p c pc a m am |
---|---|
matchkey_str |
article:19961073:2021----::htvlaclaigpiiainsmlfetertclprahoaroae |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/en14144271 doi (DE-627)DOAJ030407818 (DE-599)DOAJ7cdb9fed13164381a97264e6be1b5f92 DE-627 ger DE-627 rakwb eng Lucia Cattani verfasserin aut Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology. atmospheric water condensation air water generator photovoltaic cleaning panel cleaning optimization Technology T Paolo Cattani verfasserin aut Anna Magrini verfasserin aut In Energies MDPI AG, 2008 14(2021), 14, p 4271 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:14, p 4271 https://doi.org/10.3390/en14144271 kostenfrei https://doaj.org/article/7cdb9fed13164381a97264e6be1b5f92 kostenfrei https://www.mdpi.com/1996-1073/14/14/4271 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 14, p 4271 |
spelling |
10.3390/en14144271 doi (DE-627)DOAJ030407818 (DE-599)DOAJ7cdb9fed13164381a97264e6be1b5f92 DE-627 ger DE-627 rakwb eng Lucia Cattani verfasserin aut Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology. atmospheric water condensation air water generator photovoltaic cleaning panel cleaning optimization Technology T Paolo Cattani verfasserin aut Anna Magrini verfasserin aut In Energies MDPI AG, 2008 14(2021), 14, p 4271 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:14, p 4271 https://doi.org/10.3390/en14144271 kostenfrei https://doaj.org/article/7cdb9fed13164381a97264e6be1b5f92 kostenfrei https://www.mdpi.com/1996-1073/14/14/4271 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 14, p 4271 |
allfields_unstemmed |
10.3390/en14144271 doi (DE-627)DOAJ030407818 (DE-599)DOAJ7cdb9fed13164381a97264e6be1b5f92 DE-627 ger DE-627 rakwb eng Lucia Cattani verfasserin aut Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology. atmospheric water condensation air water generator photovoltaic cleaning panel cleaning optimization Technology T Paolo Cattani verfasserin aut Anna Magrini verfasserin aut In Energies MDPI AG, 2008 14(2021), 14, p 4271 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:14, p 4271 https://doi.org/10.3390/en14144271 kostenfrei https://doaj.org/article/7cdb9fed13164381a97264e6be1b5f92 kostenfrei https://www.mdpi.com/1996-1073/14/14/4271 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 14, p 4271 |
allfieldsGer |
10.3390/en14144271 doi (DE-627)DOAJ030407818 (DE-599)DOAJ7cdb9fed13164381a97264e6be1b5f92 DE-627 ger DE-627 rakwb eng Lucia Cattani verfasserin aut Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology. atmospheric water condensation air water generator photovoltaic cleaning panel cleaning optimization Technology T Paolo Cattani verfasserin aut Anna Magrini verfasserin aut In Energies MDPI AG, 2008 14(2021), 14, p 4271 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:14, p 4271 https://doi.org/10.3390/en14144271 kostenfrei https://doaj.org/article/7cdb9fed13164381a97264e6be1b5f92 kostenfrei https://www.mdpi.com/1996-1073/14/14/4271 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 14, p 4271 |
allfieldsSound |
10.3390/en14144271 doi (DE-627)DOAJ030407818 (DE-599)DOAJ7cdb9fed13164381a97264e6be1b5f92 DE-627 ger DE-627 rakwb eng Lucia Cattani verfasserin aut Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology. atmospheric water condensation air water generator photovoltaic cleaning panel cleaning optimization Technology T Paolo Cattani verfasserin aut Anna Magrini verfasserin aut In Energies MDPI AG, 2008 14(2021), 14, p 4271 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:14, p 4271 https://doi.org/10.3390/en14144271 kostenfrei https://doaj.org/article/7cdb9fed13164381a97264e6be1b5f92 kostenfrei https://www.mdpi.com/1996-1073/14/14/4271 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 14, p 4271 |
language |
English |
source |
In Energies 14(2021), 14, p 4271 volume:14 year:2021 number:14, p 4271 |
sourceStr |
In Energies 14(2021), 14, p 4271 volume:14 year:2021 number:14, p 4271 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
atmospheric water condensation air water generator photovoltaic cleaning panel cleaning optimization Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Lucia Cattani @@aut@@ Paolo Cattani @@aut@@ Anna Magrini @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ030407818 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030407818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412170150.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en14144271</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030407818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7cdb9fed13164381a97264e6be1b5f92</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lucia Cattani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric water condensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air water generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photovoltaic cleaning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">panel cleaning optimization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Cattani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Magrini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">14(2021), 14, p 4271</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:14, p 4271</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en14144271</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7cdb9fed13164381a97264e6be1b5f92</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/14/14/4271</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2021</subfield><subfield code="e">14, p 4271</subfield></datafield></record></collection>
|
author |
Lucia Cattani |
spellingShingle |
Lucia Cattani misc atmospheric water condensation misc air water generator misc photovoltaic cleaning misc panel cleaning optimization misc Technology misc T Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment |
authorStr |
Lucia Cattani |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment atmospheric water condensation air water generator photovoltaic cleaning panel cleaning optimization |
topic |
misc atmospheric water condensation misc air water generator misc photovoltaic cleaning misc panel cleaning optimization misc Technology misc T |
topic_unstemmed |
misc atmospheric water condensation misc air water generator misc photovoltaic cleaning misc panel cleaning optimization misc Technology misc T |
topic_browse |
misc atmospheric water condensation misc air water generator misc photovoltaic cleaning misc panel cleaning optimization misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment |
ctrlnum |
(DE-627)DOAJ030407818 (DE-599)DOAJ7cdb9fed13164381a97264e6be1b5f92 |
title_full |
Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment |
author_sort |
Lucia Cattani |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Lucia Cattani Paolo Cattani Anna Magrini |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Lucia Cattani |
doi_str_mv |
10.3390/en14144271 |
author2-role |
verfasserin |
title_sort |
photovoltaic cleaning optimization: a simplified theoretical approach for air to water generator (awg) system employment |
title_auth |
Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment |
abstract |
Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology. |
abstractGer |
Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology. |
abstract_unstemmed |
Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14, p 4271 |
title_short |
Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment |
url |
https://doi.org/10.3390/en14144271 https://doaj.org/article/7cdb9fed13164381a97264e6be1b5f92 https://www.mdpi.com/1996-1073/14/14/4271 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Paolo Cattani Anna Magrini |
author2Str |
Paolo Cattani Anna Magrini |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en14144271 |
up_date |
2024-07-03T14:50:06.120Z |
_version_ |
1803569810503630848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030407818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412170150.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en14144271</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030407818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7cdb9fed13164381a97264e6be1b5f92</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lucia Cattani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric water condensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air water generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photovoltaic cleaning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">panel cleaning optimization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Cattani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Magrini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">14(2021), 14, p 4271</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:14, p 4271</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en14144271</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7cdb9fed13164381a97264e6be1b5f92</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/14/14/4271</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2021</subfield><subfield code="e">14, p 4271</subfield></datafield></record></collection>
|
score |
7.400319 |