Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart
From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and va...
Ausführliche Beschreibung
Autor*in: |
Wei Chun Ng [verfasserIn] Michael B. C. Khoo [verfasserIn] Zhi Lin Chong [verfasserIn] Ming Ha Lee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Revstat Statistical Journal - Instituto Nacional de Estatística | Statistics Portugal, 2022, 20(2022), 1 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2022 ; number:1 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.57805/revstat.v20i1.366 |
---|
Katalog-ID: |
DOAJ030460697 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030460697 | ||
003 | DE-627 | ||
005 | 20230307150514.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.57805/revstat.v20i1.366 |2 doi | |
035 | |a (DE-627)DOAJ030460697 | ||
035 | |a (DE-599)DOAJ0c223f06d7714ffeb0bc584977e66a36 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a HA1-4737 | |
050 | 0 | |a QA273-280 | |
100 | 0 | |a Wei Chun Ng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost. | ||
650 | 4 | |a multivariate coefficient of variation (MCV) | |
650 | 4 | |a economic design | |
650 | 4 | |a economic-statistical design | |
650 | 4 | |a cost model | |
653 | 0 | |a Statistics | |
653 | 0 | |a Probabilities. Mathematical statistics | |
700 | 0 | |a Michael B. C. Khoo |e verfasserin |4 aut | |
700 | 0 | |a Zhi Lin Chong |e verfasserin |4 aut | |
700 | 0 | |a Ming Ha Lee |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Revstat Statistical Journal |d Instituto Nacional de Estatística | Statistics Portugal, 2022 |g 20(2022), 1 |w (DE-627)DOAJ078597773 |x 21830371 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2022 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.57805/revstat.v20i1.366 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0c223f06d7714ffeb0bc584977e66a36 |z kostenfrei |
856 | 4 | 0 | |u https://revstat.ine.pt/index.php/REVSTAT/article/view/366 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1645-6726 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2183-0371 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 20 |j 2022 |e 1 |
author_variant |
w c n wcn m b c k mbck z l c zlc m h l mhl |
---|---|
matchkey_str |
article:21830371:2022----::cnmcneooisaitcleinomliaitcef |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
HA |
publishDate |
2022 |
allfields |
10.57805/revstat.v20i1.366 doi (DE-627)DOAJ030460697 (DE-599)DOAJ0c223f06d7714ffeb0bc584977e66a36 DE-627 ger DE-627 rakwb eng HA1-4737 QA273-280 Wei Chun Ng verfasserin aut Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost. multivariate coefficient of variation (MCV) economic design economic-statistical design cost model Statistics Probabilities. Mathematical statistics Michael B. C. Khoo verfasserin aut Zhi Lin Chong verfasserin aut Ming Ha Lee verfasserin aut In Revstat Statistical Journal Instituto Nacional de Estatística | Statistics Portugal, 2022 20(2022), 1 (DE-627)DOAJ078597773 21830371 nnns volume:20 year:2022 number:1 https://doi.org/10.57805/revstat.v20i1.366 kostenfrei https://doaj.org/article/0c223f06d7714ffeb0bc584977e66a36 kostenfrei https://revstat.ine.pt/index.php/REVSTAT/article/view/366 kostenfrei https://doaj.org/toc/1645-6726 Journal toc kostenfrei https://doaj.org/toc/2183-0371 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 20 2022 1 |
spelling |
10.57805/revstat.v20i1.366 doi (DE-627)DOAJ030460697 (DE-599)DOAJ0c223f06d7714ffeb0bc584977e66a36 DE-627 ger DE-627 rakwb eng HA1-4737 QA273-280 Wei Chun Ng verfasserin aut Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost. multivariate coefficient of variation (MCV) economic design economic-statistical design cost model Statistics Probabilities. Mathematical statistics Michael B. C. Khoo verfasserin aut Zhi Lin Chong verfasserin aut Ming Ha Lee verfasserin aut In Revstat Statistical Journal Instituto Nacional de Estatística | Statistics Portugal, 2022 20(2022), 1 (DE-627)DOAJ078597773 21830371 nnns volume:20 year:2022 number:1 https://doi.org/10.57805/revstat.v20i1.366 kostenfrei https://doaj.org/article/0c223f06d7714ffeb0bc584977e66a36 kostenfrei https://revstat.ine.pt/index.php/REVSTAT/article/view/366 kostenfrei https://doaj.org/toc/1645-6726 Journal toc kostenfrei https://doaj.org/toc/2183-0371 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 20 2022 1 |
allfields_unstemmed |
10.57805/revstat.v20i1.366 doi (DE-627)DOAJ030460697 (DE-599)DOAJ0c223f06d7714ffeb0bc584977e66a36 DE-627 ger DE-627 rakwb eng HA1-4737 QA273-280 Wei Chun Ng verfasserin aut Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost. multivariate coefficient of variation (MCV) economic design economic-statistical design cost model Statistics Probabilities. Mathematical statistics Michael B. C. Khoo verfasserin aut Zhi Lin Chong verfasserin aut Ming Ha Lee verfasserin aut In Revstat Statistical Journal Instituto Nacional de Estatística | Statistics Portugal, 2022 20(2022), 1 (DE-627)DOAJ078597773 21830371 nnns volume:20 year:2022 number:1 https://doi.org/10.57805/revstat.v20i1.366 kostenfrei https://doaj.org/article/0c223f06d7714ffeb0bc584977e66a36 kostenfrei https://revstat.ine.pt/index.php/REVSTAT/article/view/366 kostenfrei https://doaj.org/toc/1645-6726 Journal toc kostenfrei https://doaj.org/toc/2183-0371 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 20 2022 1 |
allfieldsGer |
10.57805/revstat.v20i1.366 doi (DE-627)DOAJ030460697 (DE-599)DOAJ0c223f06d7714ffeb0bc584977e66a36 DE-627 ger DE-627 rakwb eng HA1-4737 QA273-280 Wei Chun Ng verfasserin aut Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost. multivariate coefficient of variation (MCV) economic design economic-statistical design cost model Statistics Probabilities. Mathematical statistics Michael B. C. Khoo verfasserin aut Zhi Lin Chong verfasserin aut Ming Ha Lee verfasserin aut In Revstat Statistical Journal Instituto Nacional de Estatística | Statistics Portugal, 2022 20(2022), 1 (DE-627)DOAJ078597773 21830371 nnns volume:20 year:2022 number:1 https://doi.org/10.57805/revstat.v20i1.366 kostenfrei https://doaj.org/article/0c223f06d7714ffeb0bc584977e66a36 kostenfrei https://revstat.ine.pt/index.php/REVSTAT/article/view/366 kostenfrei https://doaj.org/toc/1645-6726 Journal toc kostenfrei https://doaj.org/toc/2183-0371 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 20 2022 1 |
allfieldsSound |
10.57805/revstat.v20i1.366 doi (DE-627)DOAJ030460697 (DE-599)DOAJ0c223f06d7714ffeb0bc584977e66a36 DE-627 ger DE-627 rakwb eng HA1-4737 QA273-280 Wei Chun Ng verfasserin aut Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost. multivariate coefficient of variation (MCV) economic design economic-statistical design cost model Statistics Probabilities. Mathematical statistics Michael B. C. Khoo verfasserin aut Zhi Lin Chong verfasserin aut Ming Ha Lee verfasserin aut In Revstat Statistical Journal Instituto Nacional de Estatística | Statistics Portugal, 2022 20(2022), 1 (DE-627)DOAJ078597773 21830371 nnns volume:20 year:2022 number:1 https://doi.org/10.57805/revstat.v20i1.366 kostenfrei https://doaj.org/article/0c223f06d7714ffeb0bc584977e66a36 kostenfrei https://revstat.ine.pt/index.php/REVSTAT/article/view/366 kostenfrei https://doaj.org/toc/1645-6726 Journal toc kostenfrei https://doaj.org/toc/2183-0371 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 20 2022 1 |
language |
English |
source |
In Revstat Statistical Journal 20(2022), 1 volume:20 year:2022 number:1 |
sourceStr |
In Revstat Statistical Journal 20(2022), 1 volume:20 year:2022 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
multivariate coefficient of variation (MCV) economic design economic-statistical design cost model Statistics Probabilities. Mathematical statistics |
isfreeaccess_bool |
true |
container_title |
Revstat Statistical Journal |
authorswithroles_txt_mv |
Wei Chun Ng @@aut@@ Michael B. C. Khoo @@aut@@ Zhi Lin Chong @@aut@@ Ming Ha Lee @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ078597773 |
id |
DOAJ030460697 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030460697</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307150514.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.57805/revstat.v20i1.366</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030460697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c223f06d7714ffeb0bc584977e66a36</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HA1-4737</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Chun Ng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate coefficient of variation (MCV)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">economic design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">economic-statistical design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cost model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Statistics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael B. C. Khoo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Lin Chong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Ha Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Revstat Statistical Journal</subfield><subfield code="d">Instituto Nacional de Estatística | Statistics Portugal, 2022</subfield><subfield code="g">20(2022), 1</subfield><subfield code="w">(DE-627)DOAJ078597773</subfield><subfield code="x">21830371</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.57805/revstat.v20i1.366</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c223f06d7714ffeb0bc584977e66a36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revstat.ine.pt/index.php/REVSTAT/article/view/366</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1645-6726</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2183-0371</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
H - Social Science |
author |
Wei Chun Ng |
spellingShingle |
Wei Chun Ng misc HA1-4737 misc QA273-280 misc multivariate coefficient of variation (MCV) misc economic design misc economic-statistical design misc cost model misc Statistics misc Probabilities. Mathematical statistics Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart |
authorStr |
Wei Chun Ng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ078597773 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
HA1-4737 |
illustrated |
Not Illustrated |
issn |
21830371 |
topic_title |
HA1-4737 QA273-280 Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart multivariate coefficient of variation (MCV) economic design economic-statistical design cost model |
topic |
misc HA1-4737 misc QA273-280 misc multivariate coefficient of variation (MCV) misc economic design misc economic-statistical design misc cost model misc Statistics misc Probabilities. Mathematical statistics |
topic_unstemmed |
misc HA1-4737 misc QA273-280 misc multivariate coefficient of variation (MCV) misc economic design misc economic-statistical design misc cost model misc Statistics misc Probabilities. Mathematical statistics |
topic_browse |
misc HA1-4737 misc QA273-280 misc multivariate coefficient of variation (MCV) misc economic design misc economic-statistical design misc cost model misc Statistics misc Probabilities. Mathematical statistics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Revstat Statistical Journal |
hierarchy_parent_id |
DOAJ078597773 |
hierarchy_top_title |
Revstat Statistical Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ078597773 |
title |
Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart |
ctrlnum |
(DE-627)DOAJ030460697 (DE-599)DOAJ0c223f06d7714ffeb0bc584977e66a36 |
title_full |
Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart |
author_sort |
Wei Chun Ng |
journal |
Revstat Statistical Journal |
journalStr |
Revstat Statistical Journal |
callnumber-first-code |
H |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Wei Chun Ng Michael B. C. Khoo Zhi Lin Chong Ming Ha Lee |
container_volume |
20 |
class |
HA1-4737 QA273-280 |
format_se |
Elektronische Aufsätze |
author-letter |
Wei Chun Ng |
doi_str_mv |
10.57805/revstat.v20i1.366 |
author2-role |
verfasserin |
title_sort |
economic and economic-statistical designs of multivariate coefficient of variation chart |
callnumber |
HA1-4737 |
title_auth |
Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart |
abstract |
From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost. |
abstractGer |
From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost. |
abstract_unstemmed |
From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
1 |
title_short |
Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart |
url |
https://doi.org/10.57805/revstat.v20i1.366 https://doaj.org/article/0c223f06d7714ffeb0bc584977e66a36 https://revstat.ine.pt/index.php/REVSTAT/article/view/366 https://doaj.org/toc/1645-6726 https://doaj.org/toc/2183-0371 |
remote_bool |
true |
author2 |
Michael B. C. Khoo Zhi Lin Chong Ming Ha Lee |
author2Str |
Michael B. C. Khoo Zhi Lin Chong Ming Ha Lee |
ppnlink |
DOAJ078597773 |
callnumber-subject |
HA - Statistics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.57805/revstat.v20i1.366 |
callnumber-a |
HA1-4737 |
up_date |
2024-07-03T15:08:12.351Z |
_version_ |
1803570949498339328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030460697</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307150514.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.57805/revstat.v20i1.366</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030460697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c223f06d7714ffeb0bc584977e66a36</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HA1-4737</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Chun Ng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Economic and Economic-Statistical Designs of Multivariate Coefficient of Variation Chart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">From the economic perspective, cost minimization is an important part of Statistical Process Control (SPC). The conventional approach in SPC focuses on monitoring the process mean and variance for possible shifts. In some processes, such as clinical and financial investments, the process mean and variance are not independent of one another. Thus, a separate monitoring of the mean and variance using two different control charts is not meaningful. Therefore, the coefficient of variation chart that measures the ratio of the process variance to the mean needs to be employed. In multivariate SPC, the quality characteristics that jointly control the process quality are correlated. Thus, the multivariate coefficient of variation (MCV) chart is used in process monitoring to monitor the process MCV. This work studies the economic and economic-statistical designs of the MCV chart. Optimal parameters that minimize the cost function of the MCV chart are computed. Furthermore, it is shown that adding statistical constraints to the economic design of the MCV chart improves the chart’s statistical performance with only a minimal increase in cost.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate coefficient of variation (MCV)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">economic design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">economic-statistical design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cost model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Statistics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael B. C. Khoo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Lin Chong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ming Ha Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Revstat Statistical Journal</subfield><subfield code="d">Instituto Nacional de Estatística | Statistics Portugal, 2022</subfield><subfield code="g">20(2022), 1</subfield><subfield code="w">(DE-627)DOAJ078597773</subfield><subfield code="x">21830371</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.57805/revstat.v20i1.366</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c223f06d7714ffeb0bc584977e66a36</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revstat.ine.pt/index.php/REVSTAT/article/view/366</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1645-6726</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2183-0371</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.4013624 |