Post-typhoon forest damage estimation using multiple vegetation indices and machine learning models

The frequency and intensity of typhoons have increased due to climate change. These climate change-induced disasters have caused widespread damage to forests. Evaluation of the effects of typhoons on forest ecosystems is often complex and challenging, mainly because of their sporadic nature. In this...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Xinyu Chen [verfasserIn]

Ram Avtar [verfasserIn]

Deha Agus Umarhadi [verfasserIn]

Albertus Stephanus Louw [verfasserIn]

Sourabh Shrivastava [verfasserIn]

Ali P. Yunus [verfasserIn]

Khaled Mohamed Khedher [verfasserIn]

Tetsuya Takemi [verfasserIn]

Hideaki Shibata [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Forest damage

Remote sensing

Vegetation indices

Multispectral classification

CLASlite

Übergeordnetes Werk:

In: Weather and Climate Extremes - Elsevier, 2016, 38(2022), Seite 100494-

Übergeordnetes Werk:

volume:38 ; year:2022 ; pages:100494-

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.1016/j.wace.2022.100494

Katalog-ID:

DOAJ030505313

Nicht das Richtige dabei?

Schreiben Sie uns!