The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades
A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerod...
Ausführliche Beschreibung
Autor*in: |
Jie Zhu [verfasserIn] Rongrong Gu [verfasserIn] Pan Pan [verfasserIn] Xin Cai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 6(2013), 7, Seite 3134-3148 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2013 ; number:7 ; pages:3134-3148 |
Links: |
---|
DOI / URN: |
10.3390/en6073134 |
---|
Katalog-ID: |
DOAJ030630606 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030630606 | ||
003 | DE-627 | ||
005 | 20230307152011.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en6073134 |2 doi | |
035 | |a (DE-627)DOAJ030630606 | ||
035 | |a (DE-599)DOAJ4301f2227e154afa8481569512f80714 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Jie Zhu |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study. | ||
650 | 4 | |a rotational effect | |
650 | 4 | |a fluid structure interaction | |
650 | 4 | |a eigenbuckling | |
650 | 4 | |a Mieses stress | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Rongrong Gu |e verfasserin |4 aut | |
700 | 0 | |a Pan Pan |e verfasserin |4 aut | |
700 | 0 | |a Xin Cai |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 6(2013), 7, Seite 3134-3148 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2013 |g number:7 |g pages:3134-3148 |
856 | 4 | 0 | |u https://doi.org/10.3390/en6073134 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4301f2227e154afa8481569512f80714 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/1996-1073/6/7/3134 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2013 |e 7 |h 3134-3148 |
author_variant |
j z jz r g rg p p pp x c xc |
---|---|
matchkey_str |
article:19961073:2013----::haayioteeoyaicaatrnsrcuarsosolr |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.3390/en6073134 doi (DE-627)DOAJ030630606 (DE-599)DOAJ4301f2227e154afa8481569512f80714 DE-627 ger DE-627 rakwb eng Jie Zhu verfasserin aut The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study. rotational effect fluid structure interaction eigenbuckling Mieses stress Technology T Rongrong Gu verfasserin aut Pan Pan verfasserin aut Xin Cai verfasserin aut In Energies MDPI AG, 2008 6(2013), 7, Seite 3134-3148 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:6 year:2013 number:7 pages:3134-3148 https://doi.org/10.3390/en6073134 kostenfrei https://doaj.org/article/4301f2227e154afa8481569512f80714 kostenfrei http://www.mdpi.com/1996-1073/6/7/3134 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 7 3134-3148 |
spelling |
10.3390/en6073134 doi (DE-627)DOAJ030630606 (DE-599)DOAJ4301f2227e154afa8481569512f80714 DE-627 ger DE-627 rakwb eng Jie Zhu verfasserin aut The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study. rotational effect fluid structure interaction eigenbuckling Mieses stress Technology T Rongrong Gu verfasserin aut Pan Pan verfasserin aut Xin Cai verfasserin aut In Energies MDPI AG, 2008 6(2013), 7, Seite 3134-3148 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:6 year:2013 number:7 pages:3134-3148 https://doi.org/10.3390/en6073134 kostenfrei https://doaj.org/article/4301f2227e154afa8481569512f80714 kostenfrei http://www.mdpi.com/1996-1073/6/7/3134 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 7 3134-3148 |
allfields_unstemmed |
10.3390/en6073134 doi (DE-627)DOAJ030630606 (DE-599)DOAJ4301f2227e154afa8481569512f80714 DE-627 ger DE-627 rakwb eng Jie Zhu verfasserin aut The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study. rotational effect fluid structure interaction eigenbuckling Mieses stress Technology T Rongrong Gu verfasserin aut Pan Pan verfasserin aut Xin Cai verfasserin aut In Energies MDPI AG, 2008 6(2013), 7, Seite 3134-3148 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:6 year:2013 number:7 pages:3134-3148 https://doi.org/10.3390/en6073134 kostenfrei https://doaj.org/article/4301f2227e154afa8481569512f80714 kostenfrei http://www.mdpi.com/1996-1073/6/7/3134 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 7 3134-3148 |
allfieldsGer |
10.3390/en6073134 doi (DE-627)DOAJ030630606 (DE-599)DOAJ4301f2227e154afa8481569512f80714 DE-627 ger DE-627 rakwb eng Jie Zhu verfasserin aut The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study. rotational effect fluid structure interaction eigenbuckling Mieses stress Technology T Rongrong Gu verfasserin aut Pan Pan verfasserin aut Xin Cai verfasserin aut In Energies MDPI AG, 2008 6(2013), 7, Seite 3134-3148 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:6 year:2013 number:7 pages:3134-3148 https://doi.org/10.3390/en6073134 kostenfrei https://doaj.org/article/4301f2227e154afa8481569512f80714 kostenfrei http://www.mdpi.com/1996-1073/6/7/3134 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 7 3134-3148 |
allfieldsSound |
10.3390/en6073134 doi (DE-627)DOAJ030630606 (DE-599)DOAJ4301f2227e154afa8481569512f80714 DE-627 ger DE-627 rakwb eng Jie Zhu verfasserin aut The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study. rotational effect fluid structure interaction eigenbuckling Mieses stress Technology T Rongrong Gu verfasserin aut Pan Pan verfasserin aut Xin Cai verfasserin aut In Energies MDPI AG, 2008 6(2013), 7, Seite 3134-3148 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:6 year:2013 number:7 pages:3134-3148 https://doi.org/10.3390/en6073134 kostenfrei https://doaj.org/article/4301f2227e154afa8481569512f80714 kostenfrei http://www.mdpi.com/1996-1073/6/7/3134 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2013 7 3134-3148 |
language |
English |
source |
In Energies 6(2013), 7, Seite 3134-3148 volume:6 year:2013 number:7 pages:3134-3148 |
sourceStr |
In Energies 6(2013), 7, Seite 3134-3148 volume:6 year:2013 number:7 pages:3134-3148 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
rotational effect fluid structure interaction eigenbuckling Mieses stress Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Jie Zhu @@aut@@ Rongrong Gu @@aut@@ Pan Pan @@aut@@ Xin Cai @@aut@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ030630606 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030630606</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307152011.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en6073134</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030630606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4301f2227e154afa8481569512f80714</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jie Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotational effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fluid structure interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eigenbuckling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mieses stress</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongrong Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pan Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">6(2013), 7, Seite 3134-3148</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:3134-3148</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en6073134</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4301f2227e154afa8481569512f80714</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1996-1073/6/7/3134</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2013</subfield><subfield code="e">7</subfield><subfield code="h">3134-3148</subfield></datafield></record></collection>
|
author |
Jie Zhu |
spellingShingle |
Jie Zhu misc rotational effect misc fluid structure interaction misc eigenbuckling misc Mieses stress misc Technology misc T The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades |
authorStr |
Jie Zhu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades rotational effect fluid structure interaction eigenbuckling Mieses stress |
topic |
misc rotational effect misc fluid structure interaction misc eigenbuckling misc Mieses stress misc Technology misc T |
topic_unstemmed |
misc rotational effect misc fluid structure interaction misc eigenbuckling misc Mieses stress misc Technology misc T |
topic_browse |
misc rotational effect misc fluid structure interaction misc eigenbuckling misc Mieses stress misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades |
ctrlnum |
(DE-627)DOAJ030630606 (DE-599)DOAJ4301f2227e154afa8481569512f80714 |
title_full |
The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades |
author_sort |
Jie Zhu |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
3134 |
author_browse |
Jie Zhu Rongrong Gu Pan Pan Xin Cai |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Jie Zhu |
doi_str_mv |
10.3390/en6073134 |
author2-role |
verfasserin |
title_sort |
analysis of the aerodynamic character and structural response of large-scale wind turbine blades |
title_auth |
The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades |
abstract |
A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study. |
abstractGer |
A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study. |
abstract_unstemmed |
A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7 |
title_short |
The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades |
url |
https://doi.org/10.3390/en6073134 https://doaj.org/article/4301f2227e154afa8481569512f80714 http://www.mdpi.com/1996-1073/6/7/3134 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Rongrong Gu Pan Pan Xin Cai |
author2Str |
Rongrong Gu Pan Pan Xin Cai |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en6073134 |
up_date |
2024-07-03T16:07:24.760Z |
_version_ |
1803574674473353216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030630606</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307152011.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en6073134</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030630606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4301f2227e154afa8481569512f80714</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jie Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT) blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA) software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM) predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection) and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotational effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fluid structure interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eigenbuckling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mieses stress</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rongrong Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pan Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">6(2013), 7, Seite 3134-3148</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:3134-3148</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en6073134</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4301f2227e154afa8481569512f80714</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1996-1073/6/7/3134</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2013</subfield><subfield code="e">7</subfield><subfield code="h">3134-3148</subfield></datafield></record></collection>
|
score |
7.401613 |