Identification and Validation of Aerobic Adaptation QTLs in Upland Rice
The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1...
Ausführliche Beschreibung
Autor*in: |
Peng Xu [verfasserIn] Jun Yang [verfasserIn] Zhenbing Ma [verfasserIn] Diqiu Yu [verfasserIn] Jiawu Zhou [verfasserIn] Dayun Tao [verfasserIn] Zichao Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Life - MDPI AG, 2012, 10(2020), 5, p 65 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:5, p 65 |
Links: |
---|
DOI / URN: |
10.3390/life10050065 |
---|
Katalog-ID: |
DOAJ030632439 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030632439 | ||
003 | DE-627 | ||
005 | 20240412233842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/life10050065 |2 doi | |
035 | |a (DE-627)DOAJ030632439 | ||
035 | |a (DE-599)DOAJ8e52894a3fdb4a5385a1a65294c1c3b4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Peng Xu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification and Validation of Aerobic Adaptation QTLs in Upland Rice |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation. | ||
650 | 4 | |a upland rice | |
650 | 4 | |a aerobic adaptation | |
650 | 4 | |a introgression lines | |
650 | 4 | |a QTL near-isogenic lines | |
650 | 4 | |a breeding | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Jun Yang |e verfasserin |4 aut | |
700 | 0 | |a Zhenbing Ma |e verfasserin |4 aut | |
700 | 0 | |a Diqiu Yu |e verfasserin |4 aut | |
700 | 0 | |a Jiawu Zhou |e verfasserin |4 aut | |
700 | 0 | |a Dayun Tao |e verfasserin |4 aut | |
700 | 0 | |a Zichao Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Life |d MDPI AG, 2012 |g 10(2020), 5, p 65 |w (DE-627)718627156 |w (DE-600)2662250-6 |x 20751729 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:5, p 65 |
856 | 4 | 0 | |u https://doi.org/10.3390/life10050065 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8e52894a3fdb4a5385a1a65294c1c3b4 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-1729/10/5/65 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-1729 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 5, p 65 |
author_variant |
p x px j y jy z m zm d y dy j z jz d t dt z l zl |
---|---|
matchkey_str |
article:20751729:2020----::dniiainnvldtooarbcdpai |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/life10050065 doi (DE-627)DOAJ030632439 (DE-599)DOAJ8e52894a3fdb4a5385a1a65294c1c3b4 DE-627 ger DE-627 rakwb eng Peng Xu verfasserin aut Identification and Validation of Aerobic Adaptation QTLs in Upland Rice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation. upland rice aerobic adaptation introgression lines QTL near-isogenic lines breeding Science Q Jun Yang verfasserin aut Zhenbing Ma verfasserin aut Diqiu Yu verfasserin aut Jiawu Zhou verfasserin aut Dayun Tao verfasserin aut Zichao Li verfasserin aut In Life MDPI AG, 2012 10(2020), 5, p 65 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:10 year:2020 number:5, p 65 https://doi.org/10.3390/life10050065 kostenfrei https://doaj.org/article/8e52894a3fdb4a5385a1a65294c1c3b4 kostenfrei https://www.mdpi.com/2075-1729/10/5/65 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 65 |
spelling |
10.3390/life10050065 doi (DE-627)DOAJ030632439 (DE-599)DOAJ8e52894a3fdb4a5385a1a65294c1c3b4 DE-627 ger DE-627 rakwb eng Peng Xu verfasserin aut Identification and Validation of Aerobic Adaptation QTLs in Upland Rice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation. upland rice aerobic adaptation introgression lines QTL near-isogenic lines breeding Science Q Jun Yang verfasserin aut Zhenbing Ma verfasserin aut Diqiu Yu verfasserin aut Jiawu Zhou verfasserin aut Dayun Tao verfasserin aut Zichao Li verfasserin aut In Life MDPI AG, 2012 10(2020), 5, p 65 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:10 year:2020 number:5, p 65 https://doi.org/10.3390/life10050065 kostenfrei https://doaj.org/article/8e52894a3fdb4a5385a1a65294c1c3b4 kostenfrei https://www.mdpi.com/2075-1729/10/5/65 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 65 |
allfields_unstemmed |
10.3390/life10050065 doi (DE-627)DOAJ030632439 (DE-599)DOAJ8e52894a3fdb4a5385a1a65294c1c3b4 DE-627 ger DE-627 rakwb eng Peng Xu verfasserin aut Identification and Validation of Aerobic Adaptation QTLs in Upland Rice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation. upland rice aerobic adaptation introgression lines QTL near-isogenic lines breeding Science Q Jun Yang verfasserin aut Zhenbing Ma verfasserin aut Diqiu Yu verfasserin aut Jiawu Zhou verfasserin aut Dayun Tao verfasserin aut Zichao Li verfasserin aut In Life MDPI AG, 2012 10(2020), 5, p 65 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:10 year:2020 number:5, p 65 https://doi.org/10.3390/life10050065 kostenfrei https://doaj.org/article/8e52894a3fdb4a5385a1a65294c1c3b4 kostenfrei https://www.mdpi.com/2075-1729/10/5/65 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 65 |
allfieldsGer |
10.3390/life10050065 doi (DE-627)DOAJ030632439 (DE-599)DOAJ8e52894a3fdb4a5385a1a65294c1c3b4 DE-627 ger DE-627 rakwb eng Peng Xu verfasserin aut Identification and Validation of Aerobic Adaptation QTLs in Upland Rice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation. upland rice aerobic adaptation introgression lines QTL near-isogenic lines breeding Science Q Jun Yang verfasserin aut Zhenbing Ma verfasserin aut Diqiu Yu verfasserin aut Jiawu Zhou verfasserin aut Dayun Tao verfasserin aut Zichao Li verfasserin aut In Life MDPI AG, 2012 10(2020), 5, p 65 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:10 year:2020 number:5, p 65 https://doi.org/10.3390/life10050065 kostenfrei https://doaj.org/article/8e52894a3fdb4a5385a1a65294c1c3b4 kostenfrei https://www.mdpi.com/2075-1729/10/5/65 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 65 |
allfieldsSound |
10.3390/life10050065 doi (DE-627)DOAJ030632439 (DE-599)DOAJ8e52894a3fdb4a5385a1a65294c1c3b4 DE-627 ger DE-627 rakwb eng Peng Xu verfasserin aut Identification and Validation of Aerobic Adaptation QTLs in Upland Rice 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation. upland rice aerobic adaptation introgression lines QTL near-isogenic lines breeding Science Q Jun Yang verfasserin aut Zhenbing Ma verfasserin aut Diqiu Yu verfasserin aut Jiawu Zhou verfasserin aut Dayun Tao verfasserin aut Zichao Li verfasserin aut In Life MDPI AG, 2012 10(2020), 5, p 65 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:10 year:2020 number:5, p 65 https://doi.org/10.3390/life10050065 kostenfrei https://doaj.org/article/8e52894a3fdb4a5385a1a65294c1c3b4 kostenfrei https://www.mdpi.com/2075-1729/10/5/65 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 5, p 65 |
language |
English |
source |
In Life 10(2020), 5, p 65 volume:10 year:2020 number:5, p 65 |
sourceStr |
In Life 10(2020), 5, p 65 volume:10 year:2020 number:5, p 65 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
upland rice aerobic adaptation introgression lines QTL near-isogenic lines breeding Science Q |
isfreeaccess_bool |
true |
container_title |
Life |
authorswithroles_txt_mv |
Peng Xu @@aut@@ Jun Yang @@aut@@ Zhenbing Ma @@aut@@ Diqiu Yu @@aut@@ Jiawu Zhou @@aut@@ Dayun Tao @@aut@@ Zichao Li @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
718627156 |
id |
DOAJ030632439 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030632439</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412233842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/life10050065</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030632439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8e52894a3fdb4a5385a1a65294c1c3b4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification and Validation of Aerobic Adaptation QTLs in Upland Rice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">upland rice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerobic adaptation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">introgression lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QTL near-isogenic lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">breeding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenbing Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diqiu Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawu Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dayun Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zichao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Life</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 5, p 65</subfield><subfield code="w">(DE-627)718627156</subfield><subfield code="w">(DE-600)2662250-6</subfield><subfield code="x">20751729</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 65</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/life10050065</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8e52894a3fdb4a5385a1a65294c1c3b4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1729/10/5/65</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 65</subfield></datafield></record></collection>
|
author |
Peng Xu |
spellingShingle |
Peng Xu misc upland rice misc aerobic adaptation misc introgression lines misc QTL near-isogenic lines misc breeding misc Science misc Q Identification and Validation of Aerobic Adaptation QTLs in Upland Rice |
authorStr |
Peng Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627156 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20751729 |
topic_title |
Identification and Validation of Aerobic Adaptation QTLs in Upland Rice upland rice aerobic adaptation introgression lines QTL near-isogenic lines breeding |
topic |
misc upland rice misc aerobic adaptation misc introgression lines misc QTL near-isogenic lines misc breeding misc Science misc Q |
topic_unstemmed |
misc upland rice misc aerobic adaptation misc introgression lines misc QTL near-isogenic lines misc breeding misc Science misc Q |
topic_browse |
misc upland rice misc aerobic adaptation misc introgression lines misc QTL near-isogenic lines misc breeding misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Life |
hierarchy_parent_id |
718627156 |
hierarchy_top_title |
Life |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627156 (DE-600)2662250-6 |
title |
Identification and Validation of Aerobic Adaptation QTLs in Upland Rice |
ctrlnum |
(DE-627)DOAJ030632439 (DE-599)DOAJ8e52894a3fdb4a5385a1a65294c1c3b4 |
title_full |
Identification and Validation of Aerobic Adaptation QTLs in Upland Rice |
author_sort |
Peng Xu |
journal |
Life |
journalStr |
Life |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Peng Xu Jun Yang Zhenbing Ma Diqiu Yu Jiawu Zhou Dayun Tao Zichao Li |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Peng Xu |
doi_str_mv |
10.3390/life10050065 |
author2-role |
verfasserin |
title_sort |
identification and validation of aerobic adaptation qtls in upland rice |
title_auth |
Identification and Validation of Aerobic Adaptation QTLs in Upland Rice |
abstract |
The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation. |
abstractGer |
The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation. |
abstract_unstemmed |
The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 65 |
title_short |
Identification and Validation of Aerobic Adaptation QTLs in Upland Rice |
url |
https://doi.org/10.3390/life10050065 https://doaj.org/article/8e52894a3fdb4a5385a1a65294c1c3b4 https://www.mdpi.com/2075-1729/10/5/65 https://doaj.org/toc/2075-1729 |
remote_bool |
true |
author2 |
Jun Yang Zhenbing Ma Diqiu Yu Jiawu Zhou Dayun Tao Zichao Li |
author2Str |
Jun Yang Zhenbing Ma Diqiu Yu Jiawu Zhou Dayun Tao Zichao Li |
ppnlink |
718627156 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/life10050065 |
up_date |
2024-07-03T16:08:04.462Z |
_version_ |
1803574716099723264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030632439</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412233842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/life10050065</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030632439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8e52894a3fdb4a5385a1a65294c1c3b4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification and Validation of Aerobic Adaptation QTLs in Upland Rice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aerobic adaptation of upland rice is considered as the key genetic difference between upland rice and lowland rice. Genetic dissection of the aerobic adaptation is important as the basis for improving drought tolerance and terrestrial adaptation by using the upland rice. We raised BC<sub<1</sub<-BC<sub<3</sub< introgression lines (ILs) in lowland rice Minghui 63 (MH63) background. The QTLs of yield and yield-related traits were detected based on ILs under the aerobic and lowland environments, and then the yield-related QTLs were identified in a backcrossed inbred population of BC<sub<4</sub<F<sub<5</sub< under aerobic condition. We further verified phenotypes of QTL near-isogenic lines. Finally, three QTLs responsible for increasing yield in aerobic environment were detected by multiple locations and generations, which were designated as <i<qAER1</i<, <i<qAER3</i<, and <i<qAER9</i< (QTL of aerobic adaptation). The <i<qAER1</i< and <i<qAER9</i< were fine-mapped. We found that <i<qAER1</i< and <i<qAER9</i< controlled plant height and heading date, respectively; while both of them increased yields simultaneously by suitable plant height and heading date without delay in the aerobic environment. The phenotypic differences between lowland rice and upland rice in the aerobic environment further supported the above results. We pyramided the two QTLs as corresponding molecular modules in the irrigated lowland rice MH63 background, and successfully developed a new upland rice variety named as Zhongkexilu 2. This study will lay the foundation for using aerobic adaptation QTLs in rice breeding programs and for further cloning the key genes involved in aerobic adaptation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">upland rice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerobic adaptation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">introgression lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QTL near-isogenic lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">breeding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenbing Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diqiu Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawu Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dayun Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zichao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Life</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 5, p 65</subfield><subfield code="w">(DE-627)718627156</subfield><subfield code="w">(DE-600)2662250-6</subfield><subfield code="x">20751729</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 65</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/life10050065</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8e52894a3fdb4a5385a1a65294c1c3b4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1729/10/5/65</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 65</subfield></datafield></record></collection>
|
score |
7.401806 |