Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores
As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversio...
Ausführliche Beschreibung
Autor*in: |
Yongzhong Xu [verfasserIn] Yong Hu [verfasserIn] Zhou Xie [verfasserIn] Liguo Han [verfasserIn] Yintao Zhang [verfasserIn] Jingyi Yuan [verfasserIn] Xiaoguo Wan [verfasserIn] Xingliang Deng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Minerals - MDPI AG, 2012, 12(2022), 7, p 877 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:7, p 877 |
Links: |
---|
DOI / URN: |
10.3390/min12070877 |
---|
Katalog-ID: |
DOAJ030864887 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ030864887 | ||
003 | DE-627 | ||
005 | 20240414083835.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/min12070877 |2 doi | |
035 | |a (DE-627)DOAJ030864887 | ||
035 | |a (DE-599)DOAJfdca503ca123458195829c4f42621ca2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE351-399.2 | |
100 | 0 | |a Yongzhong Xu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. | ||
650 | 4 | |a full waveform inversion | |
650 | 4 | |a total-variation regularization | |
650 | 4 | |a time-frequency domain | |
650 | 4 | |a phase-amplitude | |
650 | 4 | |a ore bodies inversion | |
653 | 0 | |a Mineralogy | |
700 | 0 | |a Yong Hu |e verfasserin |4 aut | |
700 | 0 | |a Zhou Xie |e verfasserin |4 aut | |
700 | 0 | |a Liguo Han |e verfasserin |4 aut | |
700 | 0 | |a Yintao Zhang |e verfasserin |4 aut | |
700 | 0 | |a Jingyi Yuan |e verfasserin |4 aut | |
700 | 0 | |a Xiaoguo Wan |e verfasserin |4 aut | |
700 | 0 | |a Xingliang Deng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Minerals |d MDPI AG, 2012 |g 12(2022), 7, p 877 |w (DE-627)689132069 |w (DE-600)2655947-X |x 2075163X |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:7, p 877 |
856 | 4 | 0 | |u https://doi.org/10.3390/min12070877 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fdca503ca123458195829c4f42621ca2 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-163X/12/7/877 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-163X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 7, p 877 |
author_variant |
y x yx y h yh z x zx l h lh y z yz j y jy x w xw x d xd |
---|---|
matchkey_str |
article:2075163X:2022----::oetaopaemltdbsdutsaeulaeomnesowtttlaitorglrzto |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QE |
publishDate |
2022 |
allfields |
10.3390/min12070877 doi (DE-627)DOAJ030864887 (DE-599)DOAJfdca503ca123458195829c4f42621ca2 DE-627 ger DE-627 rakwb eng QE351-399.2 Yongzhong Xu verfasserin aut Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. full waveform inversion total-variation regularization time-frequency domain phase-amplitude ore bodies inversion Mineralogy Yong Hu verfasserin aut Zhou Xie verfasserin aut Liguo Han verfasserin aut Yintao Zhang verfasserin aut Jingyi Yuan verfasserin aut Xiaoguo Wan verfasserin aut Xingliang Deng verfasserin aut In Minerals MDPI AG, 2012 12(2022), 7, p 877 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:7, p 877 https://doi.org/10.3390/min12070877 kostenfrei https://doaj.org/article/fdca503ca123458195829c4f42621ca2 kostenfrei https://www.mdpi.com/2075-163X/12/7/877 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 7, p 877 |
spelling |
10.3390/min12070877 doi (DE-627)DOAJ030864887 (DE-599)DOAJfdca503ca123458195829c4f42621ca2 DE-627 ger DE-627 rakwb eng QE351-399.2 Yongzhong Xu verfasserin aut Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. full waveform inversion total-variation regularization time-frequency domain phase-amplitude ore bodies inversion Mineralogy Yong Hu verfasserin aut Zhou Xie verfasserin aut Liguo Han verfasserin aut Yintao Zhang verfasserin aut Jingyi Yuan verfasserin aut Xiaoguo Wan verfasserin aut Xingliang Deng verfasserin aut In Minerals MDPI AG, 2012 12(2022), 7, p 877 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:7, p 877 https://doi.org/10.3390/min12070877 kostenfrei https://doaj.org/article/fdca503ca123458195829c4f42621ca2 kostenfrei https://www.mdpi.com/2075-163X/12/7/877 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 7, p 877 |
allfields_unstemmed |
10.3390/min12070877 doi (DE-627)DOAJ030864887 (DE-599)DOAJfdca503ca123458195829c4f42621ca2 DE-627 ger DE-627 rakwb eng QE351-399.2 Yongzhong Xu verfasserin aut Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. full waveform inversion total-variation regularization time-frequency domain phase-amplitude ore bodies inversion Mineralogy Yong Hu verfasserin aut Zhou Xie verfasserin aut Liguo Han verfasserin aut Yintao Zhang verfasserin aut Jingyi Yuan verfasserin aut Xiaoguo Wan verfasserin aut Xingliang Deng verfasserin aut In Minerals MDPI AG, 2012 12(2022), 7, p 877 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:7, p 877 https://doi.org/10.3390/min12070877 kostenfrei https://doaj.org/article/fdca503ca123458195829c4f42621ca2 kostenfrei https://www.mdpi.com/2075-163X/12/7/877 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 7, p 877 |
allfieldsGer |
10.3390/min12070877 doi (DE-627)DOAJ030864887 (DE-599)DOAJfdca503ca123458195829c4f42621ca2 DE-627 ger DE-627 rakwb eng QE351-399.2 Yongzhong Xu verfasserin aut Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. full waveform inversion total-variation regularization time-frequency domain phase-amplitude ore bodies inversion Mineralogy Yong Hu verfasserin aut Zhou Xie verfasserin aut Liguo Han verfasserin aut Yintao Zhang verfasserin aut Jingyi Yuan verfasserin aut Xiaoguo Wan verfasserin aut Xingliang Deng verfasserin aut In Minerals MDPI AG, 2012 12(2022), 7, p 877 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:7, p 877 https://doi.org/10.3390/min12070877 kostenfrei https://doaj.org/article/fdca503ca123458195829c4f42621ca2 kostenfrei https://www.mdpi.com/2075-163X/12/7/877 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 7, p 877 |
allfieldsSound |
10.3390/min12070877 doi (DE-627)DOAJ030864887 (DE-599)DOAJfdca503ca123458195829c4f42621ca2 DE-627 ger DE-627 rakwb eng QE351-399.2 Yongzhong Xu verfasserin aut Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. full waveform inversion total-variation regularization time-frequency domain phase-amplitude ore bodies inversion Mineralogy Yong Hu verfasserin aut Zhou Xie verfasserin aut Liguo Han verfasserin aut Yintao Zhang verfasserin aut Jingyi Yuan verfasserin aut Xiaoguo Wan verfasserin aut Xingliang Deng verfasserin aut In Minerals MDPI AG, 2012 12(2022), 7, p 877 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:12 year:2022 number:7, p 877 https://doi.org/10.3390/min12070877 kostenfrei https://doaj.org/article/fdca503ca123458195829c4f42621ca2 kostenfrei https://www.mdpi.com/2075-163X/12/7/877 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 7, p 877 |
language |
English |
source |
In Minerals 12(2022), 7, p 877 volume:12 year:2022 number:7, p 877 |
sourceStr |
In Minerals 12(2022), 7, p 877 volume:12 year:2022 number:7, p 877 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
full waveform inversion total-variation regularization time-frequency domain phase-amplitude ore bodies inversion Mineralogy |
isfreeaccess_bool |
true |
container_title |
Minerals |
authorswithroles_txt_mv |
Yongzhong Xu @@aut@@ Yong Hu @@aut@@ Zhou Xie @@aut@@ Liguo Han @@aut@@ Yintao Zhang @@aut@@ Jingyi Yuan @@aut@@ Xiaoguo Wan @@aut@@ Xingliang Deng @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
689132069 |
id |
DOAJ030864887 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030864887</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414083835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min12070877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030864887</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfdca503ca123458195829c4f42621ca2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yongzhong Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">full waveform inversion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total-variation regularization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-frequency domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase-amplitude</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ore bodies inversion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhou Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liguo Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yintao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingyi Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoguo Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingliang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 7, p 877</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 877</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min12070877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fdca503ca123458195829c4f42621ca2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/12/7/877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 877</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yongzhong Xu |
spellingShingle |
Yongzhong Xu misc QE351-399.2 misc full waveform inversion misc total-variation regularization misc time-frequency domain misc phase-amplitude misc ore bodies inversion misc Mineralogy Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores |
authorStr |
Yongzhong Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689132069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE351-399 |
illustrated |
Not Illustrated |
issn |
2075163X |
topic_title |
QE351-399.2 Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores full waveform inversion total-variation regularization time-frequency domain phase-amplitude ore bodies inversion |
topic |
misc QE351-399.2 misc full waveform inversion misc total-variation regularization misc time-frequency domain misc phase-amplitude misc ore bodies inversion misc Mineralogy |
topic_unstemmed |
misc QE351-399.2 misc full waveform inversion misc total-variation regularization misc time-frequency domain misc phase-amplitude misc ore bodies inversion misc Mineralogy |
topic_browse |
misc QE351-399.2 misc full waveform inversion misc total-variation regularization misc time-frequency domain misc phase-amplitude misc ore bodies inversion misc Mineralogy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Minerals |
hierarchy_parent_id |
689132069 |
hierarchy_top_title |
Minerals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689132069 (DE-600)2655947-X |
title |
Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores |
ctrlnum |
(DE-627)DOAJ030864887 (DE-599)DOAJfdca503ca123458195829c4f42621ca2 |
title_full |
Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores |
author_sort |
Yongzhong Xu |
journal |
Minerals |
journalStr |
Minerals |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yongzhong Xu Yong Hu Zhou Xie Liguo Han Yintao Zhang Jingyi Yuan Xiaoguo Wan Xingliang Deng |
container_volume |
12 |
class |
QE351-399.2 |
format_se |
Elektronische Aufsätze |
author-letter |
Yongzhong Xu |
doi_str_mv |
10.3390/min12070877 |
author2-role |
verfasserin |
title_sort |
potential of phase-amplitude-based multi-scale full waveform inversion with total-variation regularization for seismic imaging of deep-seated ores |
callnumber |
QE351-399.2 |
title_auth |
Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores |
abstract |
As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. |
abstractGer |
As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. |
abstract_unstemmed |
As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 877 |
title_short |
Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores |
url |
https://doi.org/10.3390/min12070877 https://doaj.org/article/fdca503ca123458195829c4f42621ca2 https://www.mdpi.com/2075-163X/12/7/877 https://doaj.org/toc/2075-163X |
remote_bool |
true |
author2 |
Yong Hu Zhou Xie Liguo Han Yintao Zhang Jingyi Yuan Xiaoguo Wan Xingliang Deng |
author2Str |
Yong Hu Zhou Xie Liguo Han Yintao Zhang Jingyi Yuan Xiaoguo Wan Xingliang Deng |
ppnlink |
689132069 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/min12070877 |
callnumber-a |
QE351-399.2 |
up_date |
2024-07-03T17:24:16.492Z |
_version_ |
1803579510220652544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ030864887</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414083835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min12070877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ030864887</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfdca503ca123458195829c4f42621ca2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yongzhong Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Potential of Phase-Amplitude-Based Multi-Scale Full Waveform Inversion with Total-Variation Regularization for Seismic Imaging of Deep-Seated Ores</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As the demand for ore resources increases, the target for mineral exploration gradually shifts from shallow to deep parts of the Earth (<1 km). However, for the ore-hosting strata, it is difficult to obtain high-resolution images by using the electromagnetic method. Seismic full waveform inversion (FWI) is an optimization algorithm which aims at minimizing the prestack seismic data residual between synthetic and observed data. In this case, FWI provides an effective way to achieve high-resolution imaging of subsurface structures. However, acquired seismic data usually lack low frequencies, resulting in severe cycle skipping of FWI, when the initial velocity model is far away from the true one. Phase information in the seismic data provides the kinematic characteristics of waves and has a quasi-linearly relationship with subsurface structures. In this article, we propose to use a phase-amplitude-based full waveform inversion with total-variation regularization (TV-PAFWI) to invert the deep-seated ores. The ore-hosting velocity model test results demonstrate that the TV-PAFWI is suitable for high-resolution velocity model building, especially for deep-seated ores.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">full waveform inversion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total-variation regularization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-frequency domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase-amplitude</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ore bodies inversion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhou Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liguo Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yintao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingyi Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoguo Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingliang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 7, p 877</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 877</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min12070877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fdca503ca123458195829c4f42621ca2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/12/7/877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 877</subfield></datafield></record></collection>
|
score |
7.4011583 |