Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness
This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consi...
Ausführliche Beschreibung
Autor*in: |
Jianguo Sun [verfasserIn] Miaomiao Gao [verfasserIn] Daqing Jiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Life - MDPI AG, 2012, 11(2021), 8, p 766 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:8, p 766 |
Links: |
---|
DOI / URN: |
10.3390/life11080766 |
---|
Katalog-ID: |
DOAJ03088005X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ03088005X | ||
003 | DE-627 | ||
005 | 20240412163317.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/life11080766 |2 doi | |
035 | |a (DE-627)DOAJ03088005X | ||
035 | |a (DE-599)DOAJ2dafee15d89647118757e721b21984b6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Jianguo Sun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation. | ||
650 | 4 | |a stochastic viral model | |
650 | 4 | |a time delayed | |
650 | 4 | |a CTL responsiveness | |
650 | 4 | |a ergodic stationary distribution | |
650 | 4 | |a extinction | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Miaomiao Gao |e verfasserin |4 aut | |
700 | 0 | |a Daqing Jiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Life |d MDPI AG, 2012 |g 11(2021), 8, p 766 |w (DE-627)718627156 |w (DE-600)2662250-6 |x 20751729 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:8, p 766 |
856 | 4 | 0 | |u https://doi.org/10.3390/life11080766 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2dafee15d89647118757e721b21984b6 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-1729/11/8/766 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-1729 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 8, p 766 |
author_variant |
j s js m g mg d j dj |
---|---|
matchkey_str |
article:20751729:2021----::hehldnmcoaolnasohsivrloewttmdl |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/life11080766 doi (DE-627)DOAJ03088005X (DE-599)DOAJ2dafee15d89647118757e721b21984b6 DE-627 ger DE-627 rakwb eng Jianguo Sun verfasserin aut Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation. stochastic viral model time delayed CTL responsiveness ergodic stationary distribution extinction Science Q Miaomiao Gao verfasserin aut Daqing Jiang verfasserin aut In Life MDPI AG, 2012 11(2021), 8, p 766 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:8, p 766 https://doi.org/10.3390/life11080766 kostenfrei https://doaj.org/article/2dafee15d89647118757e721b21984b6 kostenfrei https://www.mdpi.com/2075-1729/11/8/766 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 8, p 766 |
spelling |
10.3390/life11080766 doi (DE-627)DOAJ03088005X (DE-599)DOAJ2dafee15d89647118757e721b21984b6 DE-627 ger DE-627 rakwb eng Jianguo Sun verfasserin aut Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation. stochastic viral model time delayed CTL responsiveness ergodic stationary distribution extinction Science Q Miaomiao Gao verfasserin aut Daqing Jiang verfasserin aut In Life MDPI AG, 2012 11(2021), 8, p 766 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:8, p 766 https://doi.org/10.3390/life11080766 kostenfrei https://doaj.org/article/2dafee15d89647118757e721b21984b6 kostenfrei https://www.mdpi.com/2075-1729/11/8/766 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 8, p 766 |
allfields_unstemmed |
10.3390/life11080766 doi (DE-627)DOAJ03088005X (DE-599)DOAJ2dafee15d89647118757e721b21984b6 DE-627 ger DE-627 rakwb eng Jianguo Sun verfasserin aut Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation. stochastic viral model time delayed CTL responsiveness ergodic stationary distribution extinction Science Q Miaomiao Gao verfasserin aut Daqing Jiang verfasserin aut In Life MDPI AG, 2012 11(2021), 8, p 766 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:8, p 766 https://doi.org/10.3390/life11080766 kostenfrei https://doaj.org/article/2dafee15d89647118757e721b21984b6 kostenfrei https://www.mdpi.com/2075-1729/11/8/766 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 8, p 766 |
allfieldsGer |
10.3390/life11080766 doi (DE-627)DOAJ03088005X (DE-599)DOAJ2dafee15d89647118757e721b21984b6 DE-627 ger DE-627 rakwb eng Jianguo Sun verfasserin aut Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation. stochastic viral model time delayed CTL responsiveness ergodic stationary distribution extinction Science Q Miaomiao Gao verfasserin aut Daqing Jiang verfasserin aut In Life MDPI AG, 2012 11(2021), 8, p 766 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:8, p 766 https://doi.org/10.3390/life11080766 kostenfrei https://doaj.org/article/2dafee15d89647118757e721b21984b6 kostenfrei https://www.mdpi.com/2075-1729/11/8/766 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 8, p 766 |
allfieldsSound |
10.3390/life11080766 doi (DE-627)DOAJ03088005X (DE-599)DOAJ2dafee15d89647118757e721b21984b6 DE-627 ger DE-627 rakwb eng Jianguo Sun verfasserin aut Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation. stochastic viral model time delayed CTL responsiveness ergodic stationary distribution extinction Science Q Miaomiao Gao verfasserin aut Daqing Jiang verfasserin aut In Life MDPI AG, 2012 11(2021), 8, p 766 (DE-627)718627156 (DE-600)2662250-6 20751729 nnns volume:11 year:2021 number:8, p 766 https://doi.org/10.3390/life11080766 kostenfrei https://doaj.org/article/2dafee15d89647118757e721b21984b6 kostenfrei https://www.mdpi.com/2075-1729/11/8/766 kostenfrei https://doaj.org/toc/2075-1729 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 8, p 766 |
language |
English |
source |
In Life 11(2021), 8, p 766 volume:11 year:2021 number:8, p 766 |
sourceStr |
In Life 11(2021), 8, p 766 volume:11 year:2021 number:8, p 766 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
stochastic viral model time delayed CTL responsiveness ergodic stationary distribution extinction Science Q |
isfreeaccess_bool |
true |
container_title |
Life |
authorswithroles_txt_mv |
Jianguo Sun @@aut@@ Miaomiao Gao @@aut@@ Daqing Jiang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718627156 |
id |
DOAJ03088005X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03088005X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412163317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/life11080766</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03088005X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2dafee15d89647118757e721b21984b6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianguo Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic viral model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time delayed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CTL responsiveness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ergodic stationary distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extinction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miaomiao Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daqing Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Life</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 8, p 766</subfield><subfield code="w">(DE-627)718627156</subfield><subfield code="w">(DE-600)2662250-6</subfield><subfield code="x">20751729</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8, p 766</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/life11080766</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2dafee15d89647118757e721b21984b6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1729/11/8/766</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">8, p 766</subfield></datafield></record></collection>
|
author |
Jianguo Sun |
spellingShingle |
Jianguo Sun misc stochastic viral model misc time delayed misc CTL responsiveness misc ergodic stationary distribution misc extinction misc Science misc Q Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness |
authorStr |
Jianguo Sun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627156 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20751729 |
topic_title |
Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness stochastic viral model time delayed CTL responsiveness ergodic stationary distribution extinction |
topic |
misc stochastic viral model misc time delayed misc CTL responsiveness misc ergodic stationary distribution misc extinction misc Science misc Q |
topic_unstemmed |
misc stochastic viral model misc time delayed misc CTL responsiveness misc ergodic stationary distribution misc extinction misc Science misc Q |
topic_browse |
misc stochastic viral model misc time delayed misc CTL responsiveness misc ergodic stationary distribution misc extinction misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Life |
hierarchy_parent_id |
718627156 |
hierarchy_top_title |
Life |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627156 (DE-600)2662250-6 |
title |
Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness |
ctrlnum |
(DE-627)DOAJ03088005X (DE-599)DOAJ2dafee15d89647118757e721b21984b6 |
title_full |
Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness |
author_sort |
Jianguo Sun |
journal |
Life |
journalStr |
Life |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Jianguo Sun Miaomiao Gao Daqing Jiang |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianguo Sun |
doi_str_mv |
10.3390/life11080766 |
author2-role |
verfasserin |
title_sort |
threshold dynamics of a non-linear stochastic viral model with time delay and ctl responsiveness |
title_auth |
Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness |
abstract |
This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation. |
abstractGer |
This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation. |
abstract_unstemmed |
This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 766 |
title_short |
Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness |
url |
https://doi.org/10.3390/life11080766 https://doaj.org/article/2dafee15d89647118757e721b21984b6 https://www.mdpi.com/2075-1729/11/8/766 https://doaj.org/toc/2075-1729 |
remote_bool |
true |
author2 |
Miaomiao Gao Daqing Jiang |
author2Str |
Miaomiao Gao Daqing Jiang |
ppnlink |
718627156 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/life11080766 |
up_date |
2024-07-03T17:29:40.482Z |
_version_ |
1803579849948790784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03088005X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412163317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/life11080766</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03088005X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2dafee15d89647118757e721b21984b6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianguo Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Threshold Dynamics of a Non-Linear Stochastic Viral Model with Time Delay and CTL Responsiveness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article focuses on a stochastic viral model with distributed delay and CTL responsiveness. It is shown that the viral disease will be extinct if the stochastic reproductive ratio is less than one. However, when the stochastic reproductive ratio is more than one, the viral infection system consists of an ergodic stationary distribution. Furthermore, we obtain the existence and uniqueness of the global positive solution by constructing a suitable Lyapunov function. Finally, we illustrate our results by numerical simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic viral model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time delayed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CTL responsiveness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ergodic stationary distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extinction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miaomiao Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daqing Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Life</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 8, p 766</subfield><subfield code="w">(DE-627)718627156</subfield><subfield code="w">(DE-600)2662250-6</subfield><subfield code="x">20751729</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8, p 766</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/life11080766</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2dafee15d89647118757e721b21984b6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-1729/11/8/766</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-1729</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">8, p 766</subfield></datafield></record></collection>
|
score |
7.400487 |