Recent Advances and Future Perspectives in Polymer-Based Nanovaccines
Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Nov...
Ausführliche Beschreibung
Autor*in: |
Natassa Pippa [verfasserIn] Maria Gazouli [verfasserIn] Stergios Pispas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Vaccines - MDPI AG, 2013, 9(2021), 6, p 558 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; number:6, p 558 |
Links: |
---|
DOI / URN: |
10.3390/vaccines9060558 |
---|
Katalog-ID: |
DOAJ031021042 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ031021042 | ||
003 | DE-627 | ||
005 | 20240412180114.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/vaccines9060558 |2 doi | |
035 | |a (DE-627)DOAJ031021042 | ||
035 | |a (DE-599)DOAJ6c7d6bf8bfc34605b5ec0197f58d345b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Natassa Pippa |e verfasserin |4 aut | |
245 | 1 | 0 | |a Recent Advances and Future Perspectives in Polymer-Based Nanovaccines |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry. | ||
650 | 4 | |a polymers | |
650 | 4 | |a biodegradable polymers | |
650 | 4 | |a poly(lactic-co-glycolic acid) (PLGA) | |
650 | 4 | |a nanoparticles | |
650 | 4 | |a nanovaccines | |
650 | 4 | |a adjuvants | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Maria Gazouli |e verfasserin |4 aut | |
700 | 0 | |a Stergios Pispas |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Vaccines |d MDPI AG, 2013 |g 9(2021), 6, p 558 |w (DE-627)736559205 |w (DE-600)2703319-3 |x 2076393X |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g number:6, p 558 |
856 | 4 | 0 | |u https://doi.org/10.3390/vaccines9060558 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6c7d6bf8bfc34605b5ec0197f58d345b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-393X/9/6/558 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-393X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |e 6, p 558 |
author_variant |
n p np m g mg s p sp |
---|---|
matchkey_str |
article:2076393X:2021----::eetdacsnftrprpcieiplmr |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/vaccines9060558 doi (DE-627)DOAJ031021042 (DE-599)DOAJ6c7d6bf8bfc34605b5ec0197f58d345b DE-627 ger DE-627 rakwb eng Natassa Pippa verfasserin aut Recent Advances and Future Perspectives in Polymer-Based Nanovaccines 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry. polymers biodegradable polymers poly(lactic-co-glycolic acid) (PLGA) nanoparticles nanovaccines adjuvants Medicine R Maria Gazouli verfasserin aut Stergios Pispas verfasserin aut In Vaccines MDPI AG, 2013 9(2021), 6, p 558 (DE-627)736559205 (DE-600)2703319-3 2076393X nnns volume:9 year:2021 number:6, p 558 https://doi.org/10.3390/vaccines9060558 kostenfrei https://doaj.org/article/6c7d6bf8bfc34605b5ec0197f58d345b kostenfrei https://www.mdpi.com/2076-393X/9/6/558 kostenfrei https://doaj.org/toc/2076-393X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 6, p 558 |
spelling |
10.3390/vaccines9060558 doi (DE-627)DOAJ031021042 (DE-599)DOAJ6c7d6bf8bfc34605b5ec0197f58d345b DE-627 ger DE-627 rakwb eng Natassa Pippa verfasserin aut Recent Advances and Future Perspectives in Polymer-Based Nanovaccines 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry. polymers biodegradable polymers poly(lactic-co-glycolic acid) (PLGA) nanoparticles nanovaccines adjuvants Medicine R Maria Gazouli verfasserin aut Stergios Pispas verfasserin aut In Vaccines MDPI AG, 2013 9(2021), 6, p 558 (DE-627)736559205 (DE-600)2703319-3 2076393X nnns volume:9 year:2021 number:6, p 558 https://doi.org/10.3390/vaccines9060558 kostenfrei https://doaj.org/article/6c7d6bf8bfc34605b5ec0197f58d345b kostenfrei https://www.mdpi.com/2076-393X/9/6/558 kostenfrei https://doaj.org/toc/2076-393X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 6, p 558 |
allfields_unstemmed |
10.3390/vaccines9060558 doi (DE-627)DOAJ031021042 (DE-599)DOAJ6c7d6bf8bfc34605b5ec0197f58d345b DE-627 ger DE-627 rakwb eng Natassa Pippa verfasserin aut Recent Advances and Future Perspectives in Polymer-Based Nanovaccines 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry. polymers biodegradable polymers poly(lactic-co-glycolic acid) (PLGA) nanoparticles nanovaccines adjuvants Medicine R Maria Gazouli verfasserin aut Stergios Pispas verfasserin aut In Vaccines MDPI AG, 2013 9(2021), 6, p 558 (DE-627)736559205 (DE-600)2703319-3 2076393X nnns volume:9 year:2021 number:6, p 558 https://doi.org/10.3390/vaccines9060558 kostenfrei https://doaj.org/article/6c7d6bf8bfc34605b5ec0197f58d345b kostenfrei https://www.mdpi.com/2076-393X/9/6/558 kostenfrei https://doaj.org/toc/2076-393X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 6, p 558 |
allfieldsGer |
10.3390/vaccines9060558 doi (DE-627)DOAJ031021042 (DE-599)DOAJ6c7d6bf8bfc34605b5ec0197f58d345b DE-627 ger DE-627 rakwb eng Natassa Pippa verfasserin aut Recent Advances and Future Perspectives in Polymer-Based Nanovaccines 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry. polymers biodegradable polymers poly(lactic-co-glycolic acid) (PLGA) nanoparticles nanovaccines adjuvants Medicine R Maria Gazouli verfasserin aut Stergios Pispas verfasserin aut In Vaccines MDPI AG, 2013 9(2021), 6, p 558 (DE-627)736559205 (DE-600)2703319-3 2076393X nnns volume:9 year:2021 number:6, p 558 https://doi.org/10.3390/vaccines9060558 kostenfrei https://doaj.org/article/6c7d6bf8bfc34605b5ec0197f58d345b kostenfrei https://www.mdpi.com/2076-393X/9/6/558 kostenfrei https://doaj.org/toc/2076-393X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 6, p 558 |
allfieldsSound |
10.3390/vaccines9060558 doi (DE-627)DOAJ031021042 (DE-599)DOAJ6c7d6bf8bfc34605b5ec0197f58d345b DE-627 ger DE-627 rakwb eng Natassa Pippa verfasserin aut Recent Advances and Future Perspectives in Polymer-Based Nanovaccines 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry. polymers biodegradable polymers poly(lactic-co-glycolic acid) (PLGA) nanoparticles nanovaccines adjuvants Medicine R Maria Gazouli verfasserin aut Stergios Pispas verfasserin aut In Vaccines MDPI AG, 2013 9(2021), 6, p 558 (DE-627)736559205 (DE-600)2703319-3 2076393X nnns volume:9 year:2021 number:6, p 558 https://doi.org/10.3390/vaccines9060558 kostenfrei https://doaj.org/article/6c7d6bf8bfc34605b5ec0197f58d345b kostenfrei https://www.mdpi.com/2076-393X/9/6/558 kostenfrei https://doaj.org/toc/2076-393X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 6, p 558 |
language |
English |
source |
In Vaccines 9(2021), 6, p 558 volume:9 year:2021 number:6, p 558 |
sourceStr |
In Vaccines 9(2021), 6, p 558 volume:9 year:2021 number:6, p 558 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
polymers biodegradable polymers poly(lactic-co-glycolic acid) (PLGA) nanoparticles nanovaccines adjuvants Medicine R |
isfreeaccess_bool |
true |
container_title |
Vaccines |
authorswithroles_txt_mv |
Natassa Pippa @@aut@@ Maria Gazouli @@aut@@ Stergios Pispas @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
736559205 |
id |
DOAJ031021042 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ031021042</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412180114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/vaccines9060558</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031021042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6c7d6bf8bfc34605b5ec0197f58d345b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Natassa Pippa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recent Advances and Future Perspectives in Polymer-Based Nanovaccines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biodegradable polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">poly(lactic-co-glycolic acid) (PLGA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanovaccines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adjuvants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Gazouli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stergios Pispas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Vaccines</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2021), 6, p 558</subfield><subfield code="w">(DE-627)736559205</subfield><subfield code="w">(DE-600)2703319-3</subfield><subfield code="x">2076393X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 558</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/vaccines9060558</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6c7d6bf8bfc34605b5ec0197f58d345b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-393X/9/6/558</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-393X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 558</subfield></datafield></record></collection>
|
author |
Natassa Pippa |
spellingShingle |
Natassa Pippa misc polymers misc biodegradable polymers misc poly(lactic-co-glycolic acid) (PLGA) misc nanoparticles misc nanovaccines misc adjuvants misc Medicine misc R Recent Advances and Future Perspectives in Polymer-Based Nanovaccines |
authorStr |
Natassa Pippa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)736559205 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2076393X |
topic_title |
Recent Advances and Future Perspectives in Polymer-Based Nanovaccines polymers biodegradable polymers poly(lactic-co-glycolic acid) (PLGA) nanoparticles nanovaccines adjuvants |
topic |
misc polymers misc biodegradable polymers misc poly(lactic-co-glycolic acid) (PLGA) misc nanoparticles misc nanovaccines misc adjuvants misc Medicine misc R |
topic_unstemmed |
misc polymers misc biodegradable polymers misc poly(lactic-co-glycolic acid) (PLGA) misc nanoparticles misc nanovaccines misc adjuvants misc Medicine misc R |
topic_browse |
misc polymers misc biodegradable polymers misc poly(lactic-co-glycolic acid) (PLGA) misc nanoparticles misc nanovaccines misc adjuvants misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Vaccines |
hierarchy_parent_id |
736559205 |
hierarchy_top_title |
Vaccines |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)736559205 (DE-600)2703319-3 |
title |
Recent Advances and Future Perspectives in Polymer-Based Nanovaccines |
ctrlnum |
(DE-627)DOAJ031021042 (DE-599)DOAJ6c7d6bf8bfc34605b5ec0197f58d345b |
title_full |
Recent Advances and Future Perspectives in Polymer-Based Nanovaccines |
author_sort |
Natassa Pippa |
journal |
Vaccines |
journalStr |
Vaccines |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Natassa Pippa Maria Gazouli Stergios Pispas |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Natassa Pippa |
doi_str_mv |
10.3390/vaccines9060558 |
author2-role |
verfasserin |
title_sort |
recent advances and future perspectives in polymer-based nanovaccines |
title_auth |
Recent Advances and Future Perspectives in Polymer-Based Nanovaccines |
abstract |
Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry. |
abstractGer |
Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry. |
abstract_unstemmed |
Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 558 |
title_short |
Recent Advances and Future Perspectives in Polymer-Based Nanovaccines |
url |
https://doi.org/10.3390/vaccines9060558 https://doaj.org/article/6c7d6bf8bfc34605b5ec0197f58d345b https://www.mdpi.com/2076-393X/9/6/558 https://doaj.org/toc/2076-393X |
remote_bool |
true |
author2 |
Maria Gazouli Stergios Pispas |
author2Str |
Maria Gazouli Stergios Pispas |
ppnlink |
736559205 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/vaccines9060558 |
up_date |
2024-07-03T18:19:00.526Z |
_version_ |
1803582953779888128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ031021042</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412180114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/vaccines9060558</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031021042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6c7d6bf8bfc34605b5ec0197f58d345b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Natassa Pippa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recent Advances and Future Perspectives in Polymer-Based Nanovaccines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biodegradable polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">poly(lactic-co-glycolic acid) (PLGA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanovaccines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adjuvants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Gazouli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stergios Pispas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Vaccines</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">9(2021), 6, p 558</subfield><subfield code="w">(DE-627)736559205</subfield><subfield code="w">(DE-600)2703319-3</subfield><subfield code="x">2076393X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 558</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/vaccines9060558</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6c7d6bf8bfc34605b5ec0197f58d345b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-393X/9/6/558</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-393X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 558</subfield></datafield></record></collection>
|
score |
7.401374 |