Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning
Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and...
Ausführliche Beschreibung
Autor*in: |
Jinglin Xu [verfasserIn] Feng Zeng [verfasserIn] Wen Liu [verfasserIn] Toru Takahashi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 12(2022), 10, p 4912 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:10, p 4912 |
Links: |
---|
DOI / URN: |
10.3390/app12104912 |
---|
Katalog-ID: |
DOAJ031229727 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ031229727 | ||
003 | DE-627 | ||
005 | 20240414223205.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app12104912 |2 doi | |
035 | |a (DE-627)DOAJ031229727 | ||
035 | |a (DE-599)DOAJ299e40c972524dcbab80305df1ab8e26 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Jinglin Xu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon. | ||
650 | 4 | |a deep learning | |
650 | 4 | |a aerial photo | |
650 | 4 | |a typhoon faxai | |
650 | 4 | |a roof damage | |
650 | 4 | |a detection | |
650 | 4 | |a classification | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Feng Zeng |e verfasserin |4 aut | |
700 | 0 | |a Wen Liu |e verfasserin |4 aut | |
700 | 0 | |a Toru Takahashi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 12(2022), 10, p 4912 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:10, p 4912 |
856 | 4 | 0 | |u https://doi.org/10.3390/app12104912 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/299e40c972524dcbab80305df1ab8e26 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/12/10/4912 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 10, p 4912 |
author_variant |
j x jx f z fz w l wl t t tt |
---|---|
matchkey_str |
article:20763417:2022----::aaeeetoadeecasfctoorodmgatryhofxiaeoa |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.3390/app12104912 doi (DE-627)DOAJ031229727 (DE-599)DOAJ299e40c972524dcbab80305df1ab8e26 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jinglin Xu verfasserin aut Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon. deep learning aerial photo typhoon faxai roof damage detection classification Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Feng Zeng verfasserin aut Wen Liu verfasserin aut Toru Takahashi verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 10, p 4912 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:10, p 4912 https://doi.org/10.3390/app12104912 kostenfrei https://doaj.org/article/299e40c972524dcbab80305df1ab8e26 kostenfrei https://www.mdpi.com/2076-3417/12/10/4912 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 4912 |
spelling |
10.3390/app12104912 doi (DE-627)DOAJ031229727 (DE-599)DOAJ299e40c972524dcbab80305df1ab8e26 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jinglin Xu verfasserin aut Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon. deep learning aerial photo typhoon faxai roof damage detection classification Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Feng Zeng verfasserin aut Wen Liu verfasserin aut Toru Takahashi verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 10, p 4912 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:10, p 4912 https://doi.org/10.3390/app12104912 kostenfrei https://doaj.org/article/299e40c972524dcbab80305df1ab8e26 kostenfrei https://www.mdpi.com/2076-3417/12/10/4912 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 4912 |
allfields_unstemmed |
10.3390/app12104912 doi (DE-627)DOAJ031229727 (DE-599)DOAJ299e40c972524dcbab80305df1ab8e26 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jinglin Xu verfasserin aut Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon. deep learning aerial photo typhoon faxai roof damage detection classification Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Feng Zeng verfasserin aut Wen Liu verfasserin aut Toru Takahashi verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 10, p 4912 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:10, p 4912 https://doi.org/10.3390/app12104912 kostenfrei https://doaj.org/article/299e40c972524dcbab80305df1ab8e26 kostenfrei https://www.mdpi.com/2076-3417/12/10/4912 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 4912 |
allfieldsGer |
10.3390/app12104912 doi (DE-627)DOAJ031229727 (DE-599)DOAJ299e40c972524dcbab80305df1ab8e26 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jinglin Xu verfasserin aut Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon. deep learning aerial photo typhoon faxai roof damage detection classification Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Feng Zeng verfasserin aut Wen Liu verfasserin aut Toru Takahashi verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 10, p 4912 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:10, p 4912 https://doi.org/10.3390/app12104912 kostenfrei https://doaj.org/article/299e40c972524dcbab80305df1ab8e26 kostenfrei https://www.mdpi.com/2076-3417/12/10/4912 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 4912 |
allfieldsSound |
10.3390/app12104912 doi (DE-627)DOAJ031229727 (DE-599)DOAJ299e40c972524dcbab80305df1ab8e26 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Jinglin Xu verfasserin aut Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon. deep learning aerial photo typhoon faxai roof damage detection classification Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Feng Zeng verfasserin aut Wen Liu verfasserin aut Toru Takahashi verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 10, p 4912 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:10, p 4912 https://doi.org/10.3390/app12104912 kostenfrei https://doaj.org/article/299e40c972524dcbab80305df1ab8e26 kostenfrei https://www.mdpi.com/2076-3417/12/10/4912 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 4912 |
language |
English |
source |
In Applied Sciences 12(2022), 10, p 4912 volume:12 year:2022 number:10, p 4912 |
sourceStr |
In Applied Sciences 12(2022), 10, p 4912 volume:12 year:2022 number:10, p 4912 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
deep learning aerial photo typhoon faxai roof damage detection classification Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Jinglin Xu @@aut@@ Feng Zeng @@aut@@ Wen Liu @@aut@@ Toru Takahashi @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ031229727 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ031229727</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414223205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app12104912</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031229727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ299e40c972524dcbab80305df1ab8e26</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinglin Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerial photo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">typhoon faxai</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">roof damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">classification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wen Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toru Takahashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 10, p 4912</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 4912</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app12104912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/299e40c972524dcbab80305df1ab8e26</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/10/4912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 4912</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jinglin Xu |
spellingShingle |
Jinglin Xu misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc deep learning misc aerial photo misc typhoon faxai misc roof damage misc detection misc classification misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning |
authorStr |
Jinglin Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning deep learning aerial photo typhoon faxai roof damage detection classification |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc deep learning misc aerial photo misc typhoon faxai misc roof damage misc detection misc classification misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc deep learning misc aerial photo misc typhoon faxai misc roof damage misc detection misc classification misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc deep learning misc aerial photo misc typhoon faxai misc roof damage misc detection misc classification misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning |
ctrlnum |
(DE-627)DOAJ031229727 (DE-599)DOAJ299e40c972524dcbab80305df1ab8e26 |
title_full |
Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning |
author_sort |
Jinglin Xu |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jinglin Xu Feng Zeng Wen Liu Toru Takahashi |
container_volume |
12 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Jinglin Xu |
doi_str_mv |
10.3390/app12104912 |
author2-role |
verfasserin |
title_sort |
damage detection and level classification of roof damage after typhoon faxai based on aerial photos and deep learning |
callnumber |
TA1-2040 |
title_auth |
Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning |
abstract |
Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon. |
abstractGer |
Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon. |
abstract_unstemmed |
Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 4912 |
title_short |
Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning |
url |
https://doi.org/10.3390/app12104912 https://doaj.org/article/299e40c972524dcbab80305df1ab8e26 https://www.mdpi.com/2076-3417/12/10/4912 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Feng Zeng Wen Liu Toru Takahashi |
author2Str |
Feng Zeng Wen Liu Toru Takahashi |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app12104912 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T19:27:57.655Z |
_version_ |
1803587291874066432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ031229727</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414223205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app12104912</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031229727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ299e40c972524dcbab80305df1ab8e26</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinglin Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Damage Detection and Level Classification of Roof Damage after Typhoon Faxai Based on Aerial Photos and Deep Learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Following the occurrence of a typhoon, quick damage assessment can facilitate the quick dispatch of house repair and disaster insurance works. Employing a deep learning method, this study used aerial photos of the Chiba prefecture obtained following Typhoon Faxai in 2019, to automatically detect and evaluate the roof damage. This study comprised three parts: training a deep learning model, detecting the roof damage using a trained model, and classifying the level of roof damage. The detection object comprised a roof outline, blue tarps, and a completely destroyed roof. The roofs were divided into three categories: without damage, with blue tarps, and completely destroyed. The F value obtained using the proposed method was higher than those obtained using other methods. In addition, it can be further divided into five levels from levels 0 to 4. Finally, the spatial distribution of the roof damage was analyzed using ArcGIS tools. The proposed method is expected to provide a certain reference for real-time detection of roof damage after the occurrence of a typhoon.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aerial photo</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">typhoon faxai</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">roof damage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">classification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wen Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toru Takahashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 10, p 4912</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 4912</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app12104912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/299e40c972524dcbab80305df1ab8e26</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/10/4912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 4912</subfield></datafield></record></collection>
|
score |
7.40246 |