Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882
Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-respo...
Ausführliche Beschreibung
Autor*in: |
Hidemitsu Sakai [verfasserIn] Takeshi Tokida [verfasserIn] Yasuhiro Usui [verfasserIn] Hirofumi Nakamura [verfasserIn] Toshihiro Hasegawa [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plant Production Science - Taylor & Francis Group, 2004, 22(2019), 3, Seite 352-366 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2019 ; number:3 ; pages:352-366 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1080/1343943X.2019.1626255 |
---|
Katalog-ID: |
DOAJ031687571 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ031687571 | ||
003 | DE-627 | ||
005 | 20230307162327.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/1343943X.2019.1626255 |2 doi | |
035 | |a (DE-627)DOAJ031687571 | ||
035 | |a (DE-599)DOAJbbc36d168c6b422996444336b9d307f3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SB1-1110 | |
100 | 0 | |a Hidemitsu Sakai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2]. | ||
650 | 4 | |a breeding | |
650 | 4 | |a climate change | |
650 | 4 | |a co2 sensitivity | |
650 | 4 | |a cultivar | |
650 | 4 | |a face | |
650 | 4 | |a oryza sativa | |
650 | 4 | |a yield | |
653 | 0 | |a Plant culture | |
700 | 0 | |a Takeshi Tokida |e verfasserin |4 aut | |
700 | 0 | |a Yasuhiro Usui |e verfasserin |4 aut | |
700 | 0 | |a Hirofumi Nakamura |e verfasserin |4 aut | |
700 | 0 | |a Toshihiro Hasegawa |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plant Production Science |d Taylor & Francis Group, 2004 |g 22(2019), 3, Seite 352-366 |w (DE-627)391333887 |w (DE-600)2152184-0 |x 13491008 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2019 |g number:3 |g pages:352-366 |
856 | 4 | 0 | |u https://doi.org/10.1080/1343943X.2019.1626255 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bbc36d168c6b422996444336b9d307f3 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1080/1343943X.2019.1626255 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1343-943X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1349-1008 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2019 |e 3 |h 352-366 |
author_variant |
h s hs t t tt y u yu h n hn t h th |
---|---|
matchkey_str |
article:13491008:2019----::ilrsossolvtdocnetainmnjpnsrccl |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
SB |
publishDate |
2019 |
allfields |
10.1080/1343943X.2019.1626255 doi (DE-627)DOAJ031687571 (DE-599)DOAJbbc36d168c6b422996444336b9d307f3 DE-627 ger DE-627 rakwb eng SB1-1110 Hidemitsu Sakai verfasserin aut Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2]. breeding climate change co2 sensitivity cultivar face oryza sativa yield Plant culture Takeshi Tokida verfasserin aut Yasuhiro Usui verfasserin aut Hirofumi Nakamura verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 22(2019), 3, Seite 352-366 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:22 year:2019 number:3 pages:352-366 https://doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/article/bbc36d168c6b422996444336b9d307f3 kostenfrei http://dx.doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 22 2019 3 352-366 |
spelling |
10.1080/1343943X.2019.1626255 doi (DE-627)DOAJ031687571 (DE-599)DOAJbbc36d168c6b422996444336b9d307f3 DE-627 ger DE-627 rakwb eng SB1-1110 Hidemitsu Sakai verfasserin aut Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2]. breeding climate change co2 sensitivity cultivar face oryza sativa yield Plant culture Takeshi Tokida verfasserin aut Yasuhiro Usui verfasserin aut Hirofumi Nakamura verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 22(2019), 3, Seite 352-366 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:22 year:2019 number:3 pages:352-366 https://doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/article/bbc36d168c6b422996444336b9d307f3 kostenfrei http://dx.doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 22 2019 3 352-366 |
allfields_unstemmed |
10.1080/1343943X.2019.1626255 doi (DE-627)DOAJ031687571 (DE-599)DOAJbbc36d168c6b422996444336b9d307f3 DE-627 ger DE-627 rakwb eng SB1-1110 Hidemitsu Sakai verfasserin aut Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2]. breeding climate change co2 sensitivity cultivar face oryza sativa yield Plant culture Takeshi Tokida verfasserin aut Yasuhiro Usui verfasserin aut Hirofumi Nakamura verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 22(2019), 3, Seite 352-366 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:22 year:2019 number:3 pages:352-366 https://doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/article/bbc36d168c6b422996444336b9d307f3 kostenfrei http://dx.doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 22 2019 3 352-366 |
allfieldsGer |
10.1080/1343943X.2019.1626255 doi (DE-627)DOAJ031687571 (DE-599)DOAJbbc36d168c6b422996444336b9d307f3 DE-627 ger DE-627 rakwb eng SB1-1110 Hidemitsu Sakai verfasserin aut Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2]. breeding climate change co2 sensitivity cultivar face oryza sativa yield Plant culture Takeshi Tokida verfasserin aut Yasuhiro Usui verfasserin aut Hirofumi Nakamura verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 22(2019), 3, Seite 352-366 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:22 year:2019 number:3 pages:352-366 https://doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/article/bbc36d168c6b422996444336b9d307f3 kostenfrei http://dx.doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 22 2019 3 352-366 |
allfieldsSound |
10.1080/1343943X.2019.1626255 doi (DE-627)DOAJ031687571 (DE-599)DOAJbbc36d168c6b422996444336b9d307f3 DE-627 ger DE-627 rakwb eng SB1-1110 Hidemitsu Sakai verfasserin aut Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2]. breeding climate change co2 sensitivity cultivar face oryza sativa yield Plant culture Takeshi Tokida verfasserin aut Yasuhiro Usui verfasserin aut Hirofumi Nakamura verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 22(2019), 3, Seite 352-366 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:22 year:2019 number:3 pages:352-366 https://doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/article/bbc36d168c6b422996444336b9d307f3 kostenfrei http://dx.doi.org/10.1080/1343943X.2019.1626255 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 22 2019 3 352-366 |
language |
English |
source |
In Plant Production Science 22(2019), 3, Seite 352-366 volume:22 year:2019 number:3 pages:352-366 |
sourceStr |
In Plant Production Science 22(2019), 3, Seite 352-366 volume:22 year:2019 number:3 pages:352-366 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
breeding climate change co2 sensitivity cultivar face oryza sativa yield Plant culture |
isfreeaccess_bool |
true |
container_title |
Plant Production Science |
authorswithroles_txt_mv |
Hidemitsu Sakai @@aut@@ Takeshi Tokida @@aut@@ Yasuhiro Usui @@aut@@ Hirofumi Nakamura @@aut@@ Toshihiro Hasegawa @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
391333887 |
id |
DOAJ031687571 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ031687571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307162327.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/1343943X.2019.1626255</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031687571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbbc36d168c6b422996444336b9d307f3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hidemitsu Sakai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">breeding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co2 sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cultivar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">face</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oryza sativa</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">yield</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takeshi Tokida</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasuhiro Usui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hirofumi Nakamura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshihiro Hasegawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plant Production Science</subfield><subfield code="d">Taylor & Francis Group, 2004</subfield><subfield code="g">22(2019), 3, Seite 352-366</subfield><subfield code="w">(DE-627)391333887</subfield><subfield code="w">(DE-600)2152184-0</subfield><subfield code="x">13491008</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:352-366</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/1343943X.2019.1626255</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bbc36d168c6b422996444336b9d307f3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/1343943X.2019.1626255</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1343-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1349-1008</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="h">352-366</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Hidemitsu Sakai |
spellingShingle |
Hidemitsu Sakai misc SB1-1110 misc breeding misc climate change misc co2 sensitivity misc cultivar misc face misc oryza sativa misc yield misc Plant culture Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 |
authorStr |
Hidemitsu Sakai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)391333887 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SB1-1110 |
illustrated |
Not Illustrated |
issn |
13491008 |
topic_title |
SB1-1110 Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 breeding climate change co2 sensitivity cultivar face oryza sativa yield |
topic |
misc SB1-1110 misc breeding misc climate change misc co2 sensitivity misc cultivar misc face misc oryza sativa misc yield misc Plant culture |
topic_unstemmed |
misc SB1-1110 misc breeding misc climate change misc co2 sensitivity misc cultivar misc face misc oryza sativa misc yield misc Plant culture |
topic_browse |
misc SB1-1110 misc breeding misc climate change misc co2 sensitivity misc cultivar misc face misc oryza sativa misc yield misc Plant culture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plant Production Science |
hierarchy_parent_id |
391333887 |
hierarchy_top_title |
Plant Production Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)391333887 (DE-600)2152184-0 |
title |
Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 |
ctrlnum |
(DE-627)DOAJ031687571 (DE-599)DOAJbbc36d168c6b422996444336b9d307f3 |
title_full |
Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 |
author_sort |
Hidemitsu Sakai |
journal |
Plant Production Science |
journalStr |
Plant Production Science |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
352 |
author_browse |
Hidemitsu Sakai Takeshi Tokida Yasuhiro Usui Hirofumi Nakamura Toshihiro Hasegawa |
container_volume |
22 |
class |
SB1-1110 |
format_se |
Elektronische Aufsätze |
author-letter |
Hidemitsu Sakai |
doi_str_mv |
10.1080/1343943X.2019.1626255 |
author2-role |
verfasserin |
title_sort |
yield responses to elevated co2 concentration among japanese rice cultivars released since 1882 |
callnumber |
SB1-1110 |
title_auth |
Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 |
abstract |
Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2]. |
abstractGer |
Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2]. |
abstract_unstemmed |
Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2]. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882 |
url |
https://doi.org/10.1080/1343943X.2019.1626255 https://doaj.org/article/bbc36d168c6b422996444336b9d307f3 http://dx.doi.org/10.1080/1343943X.2019.1626255 https://doaj.org/toc/1343-943X https://doaj.org/toc/1349-1008 |
remote_bool |
true |
author2 |
Takeshi Tokida Yasuhiro Usui Hirofumi Nakamura Toshihiro Hasegawa |
author2Str |
Takeshi Tokida Yasuhiro Usui Hirofumi Nakamura Toshihiro Hasegawa |
ppnlink |
391333887 |
callnumber-subject |
SB - Plant Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/1343943X.2019.1626255 |
callnumber-a |
SB1-1110 |
up_date |
2024-07-03T21:56:51.562Z |
_version_ |
1803596659753484288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ031687571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307162327.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/1343943X.2019.1626255</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031687571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbbc36d168c6b422996444336b9d307f3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hidemitsu Sakai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Atmospheric CO2 concentrations ([CO2]) have increased by more than 100 μmol mol−1 over the last century and are projected to rise further. Breeding cultivars with a greater response to elevated [CO2] (E-[CO2]) can be an effective adaptation to global climate change. We wondered whether E-[CO2]-responsive cultivars have been unintentionally selected through empirical breeding as [CO2] has increased. If so, modern cultivars may respond better to E-[CO2] than old ones. We conducted free-air CO2 enrichment (FACE) experiments in 2 years to examine whether rice cultivars bred in different eras differ in response to E-[CO2] and to determine any associated traits. We tested five Japanese cultivars: Aikoku (released in 1882), Norin 8 (1934), Koshihikari (1956), Akihikari (1976) and Akidawara (2009). The yields of Aikoku and Norin 8 increased by 19.3% and 30.3%, respectively, under E-[CO2], while those of Koshihikari and Akihikari increased by 15.9% and 3.4%, respectively. However, that of Akidawara, the newest cultivar, also increased by 19.0%. Norin 8’s strong response to E-[CO2] was associated with increases in both spikelet density and percentage of ripened grains, both of which were closely related to nitrogen uptake. These results suggest that breeding has not necessarily improved cultivars’ response to E-[CO2], and that selection for traits such as sink capacity and nitrogen uptake can be effective to improve rice productivity under E-[CO2].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">breeding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">co2 sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cultivar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">face</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oryza sativa</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">yield</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Takeshi Tokida</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasuhiro Usui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hirofumi Nakamura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshihiro Hasegawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plant Production Science</subfield><subfield code="d">Taylor & Francis Group, 2004</subfield><subfield code="g">22(2019), 3, Seite 352-366</subfield><subfield code="w">(DE-627)391333887</subfield><subfield code="w">(DE-600)2152184-0</subfield><subfield code="x">13491008</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:352-366</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/1343943X.2019.1626255</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bbc36d168c6b422996444336b9d307f3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/1343943X.2019.1626255</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1343-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1349-1008</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="h">352-366</subfield></datafield></record></collection>
|
score |
7.400401 |