A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System
This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution proble...
Ausführliche Beschreibung
Autor*in: |
Qiao Zhang [verfasserIn] Gang Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
In: Mathematical Problems in Engineering - Hindawi Limited, 2002, (2019) |
---|---|
Übergeordnetes Werk: |
year:2019 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2019/7860214 |
---|
Katalog-ID: |
DOAJ031795919 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ031795919 | ||
003 | DE-627 | ||
005 | 20230226212834.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2019/7860214 |2 doi | |
035 | |a (DE-627)DOAJ031795919 | ||
035 | |a (DE-599)DOAJ6be413a7691c42c29fbbdbd0aa7a6953 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QA1-939 | |
100 | 0 | |a Qiao Zhang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test. | ||
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Gang Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematical Problems in Engineering |d Hindawi Limited, 2002 |g (2019) |w (DE-627)320519937 |w (DE-600)2014442-8 |x 1024123X |7 nnns |
773 | 1 | 8 | |g year:2019 |
856 | 4 | 0 | |u https://doi.org/10.1155/2019/7860214 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6be413a7691c42c29fbbdbd0aa7a6953 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2019/7860214 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1024-123X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1563-5147 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2019 |
author_variant |
q z qz g l gl |
---|---|
matchkey_str |
article:1024123X:2019----::gmtereegmngmnsrtgfrfeclbteyy |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TA |
publishDate |
2019 |
allfields |
10.1155/2019/7860214 doi (DE-627)DOAJ031795919 (DE-599)DOAJ6be413a7691c42c29fbbdbd0aa7a6953 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Qiao Zhang verfasserin aut A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test. Engineering (General). Civil engineering (General) Mathematics Gang Li verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/article/6be413a7691c42c29fbbdbd0aa7a6953 kostenfrei http://dx.doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
spelling |
10.1155/2019/7860214 doi (DE-627)DOAJ031795919 (DE-599)DOAJ6be413a7691c42c29fbbdbd0aa7a6953 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Qiao Zhang verfasserin aut A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test. Engineering (General). Civil engineering (General) Mathematics Gang Li verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/article/6be413a7691c42c29fbbdbd0aa7a6953 kostenfrei http://dx.doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfields_unstemmed |
10.1155/2019/7860214 doi (DE-627)DOAJ031795919 (DE-599)DOAJ6be413a7691c42c29fbbdbd0aa7a6953 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Qiao Zhang verfasserin aut A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test. Engineering (General). Civil engineering (General) Mathematics Gang Li verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/article/6be413a7691c42c29fbbdbd0aa7a6953 kostenfrei http://dx.doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsGer |
10.1155/2019/7860214 doi (DE-627)DOAJ031795919 (DE-599)DOAJ6be413a7691c42c29fbbdbd0aa7a6953 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Qiao Zhang verfasserin aut A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test. Engineering (General). Civil engineering (General) Mathematics Gang Li verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/article/6be413a7691c42c29fbbdbd0aa7a6953 kostenfrei http://dx.doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsSound |
10.1155/2019/7860214 doi (DE-627)DOAJ031795919 (DE-599)DOAJ6be413a7691c42c29fbbdbd0aa7a6953 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Qiao Zhang verfasserin aut A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test. Engineering (General). Civil engineering (General) Mathematics Gang Li verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/article/6be413a7691c42c29fbbdbd0aa7a6953 kostenfrei http://dx.doi.org/10.1155/2019/7860214 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
language |
English |
source |
In Mathematical Problems in Engineering (2019) year:2019 |
sourceStr |
In Mathematical Problems in Engineering (2019) year:2019 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Engineering (General). Civil engineering (General) Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematical Problems in Engineering |
authorswithroles_txt_mv |
Qiao Zhang @@aut@@ Gang Li @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320519937 |
id |
DOAJ031795919 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ031795919</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230226212834.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2019/7860214</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031795919</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6be413a7691c42c29fbbdbd0aa7a6953</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Problems in Engineering</subfield><subfield code="d">Hindawi Limited, 2002</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)320519937</subfield><subfield code="w">(DE-600)2014442-8</subfield><subfield code="x">1024123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2019/7860214</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6be413a7691c42c29fbbdbd0aa7a6953</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2019/7860214</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1024-123X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1563-5147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Qiao Zhang |
spellingShingle |
Qiao Zhang misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System |
authorStr |
Qiao Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320519937 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
1024123X |
topic_title |
TA1-2040 QA1-939 A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System |
topic |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
topic_unstemmed |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
topic_browse |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematical Problems in Engineering |
hierarchy_parent_id |
320519937 |
hierarchy_top_title |
Mathematical Problems in Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320519937 (DE-600)2014442-8 |
title |
A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System |
ctrlnum |
(DE-627)DOAJ031795919 (DE-599)DOAJ6be413a7691c42c29fbbdbd0aa7a6953 |
title_full |
A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System |
author_sort |
Qiao Zhang |
journal |
Mathematical Problems in Engineering |
journalStr |
Mathematical Problems in Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Qiao Zhang Gang Li |
class |
TA1-2040 QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Qiao Zhang |
doi_str_mv |
10.1155/2019/7860214 |
author2-role |
verfasserin |
title_sort |
game theory energy management strategy for a fuel cell/battery hybrid energy storage system |
callnumber |
TA1-2040 |
title_auth |
A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System |
abstract |
This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test. |
abstractGer |
This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test. |
abstract_unstemmed |
This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System |
url |
https://doi.org/10.1155/2019/7860214 https://doaj.org/article/6be413a7691c42c29fbbdbd0aa7a6953 http://dx.doi.org/10.1155/2019/7860214 https://doaj.org/toc/1024-123X https://doaj.org/toc/1563-5147 |
remote_bool |
true |
author2 |
Gang Li |
author2Str |
Gang Li |
ppnlink |
320519937 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2019/7860214 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T22:29:43.905Z |
_version_ |
1803598727907115008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ031795919</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230226212834.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2019/7860214</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031795919</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6be413a7691c42c29fbbdbd0aa7a6953</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qiao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Problems in Engineering</subfield><subfield code="d">Hindawi Limited, 2002</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)320519937</subfield><subfield code="w">(DE-600)2014442-8</subfield><subfield code="x">1024123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2019/7860214</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6be413a7691c42c29fbbdbd0aa7a6953</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2019/7860214</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1024-123X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1563-5147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
score |
7.4019337 |