A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system
Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain a...
Ausführliche Beschreibung
Autor*in: |
Amran Hossain [verfasserIn] Mohammad Tariqul Islam [verfasserIn] Ali F. Almutairi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 12(2022), 1, Seite 27 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1 ; pages:27 |
Links: |
---|
DOI / URN: |
10.1038/s41598-022-10309-6 |
---|
Katalog-ID: |
DOAJ031997716 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ031997716 | ||
003 | DE-627 | ||
005 | 20230307163945.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-022-10309-6 |2 doi | |
035 | |a (DE-627)DOAJ031997716 | ||
035 | |a (DE-599)DOAJd3aeabdbee054c77a83233b49b07b264 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Amran Hossain |e verfasserin |4 aut | |
245 | 1 | 2 | |a A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Mohammad Tariqul Islam |e verfasserin |4 aut | |
700 | 0 | |a Ali F. Almutairi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 12(2022), 1, Seite 27 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1 |g pages:27 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-10309-6 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d3aeabdbee054c77a83233b49b07b264 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-10309-6 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1 |h 27 |
author_variant |
a h ah m t i mti a f a afa |
---|---|
matchkey_str |
article:20452322:2022----::delannmdlolsiyndtcbanbomlteipralmc |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1038/s41598-022-10309-6 doi (DE-627)DOAJ031997716 (DE-599)DOAJd3aeabdbee054c77a83233b49b07b264 DE-627 ger DE-627 rakwb eng Amran Hossain verfasserin aut A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application. Medicine R Science Q Mohammad Tariqul Islam verfasserin aut Ali F. Almutairi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 27 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:27 https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/article/d3aeabdbee054c77a83233b49b07b264 kostenfrei https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 27 |
spelling |
10.1038/s41598-022-10309-6 doi (DE-627)DOAJ031997716 (DE-599)DOAJd3aeabdbee054c77a83233b49b07b264 DE-627 ger DE-627 rakwb eng Amran Hossain verfasserin aut A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application. Medicine R Science Q Mohammad Tariqul Islam verfasserin aut Ali F. Almutairi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 27 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:27 https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/article/d3aeabdbee054c77a83233b49b07b264 kostenfrei https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 27 |
allfields_unstemmed |
10.1038/s41598-022-10309-6 doi (DE-627)DOAJ031997716 (DE-599)DOAJd3aeabdbee054c77a83233b49b07b264 DE-627 ger DE-627 rakwb eng Amran Hossain verfasserin aut A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application. Medicine R Science Q Mohammad Tariqul Islam verfasserin aut Ali F. Almutairi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 27 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:27 https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/article/d3aeabdbee054c77a83233b49b07b264 kostenfrei https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 27 |
allfieldsGer |
10.1038/s41598-022-10309-6 doi (DE-627)DOAJ031997716 (DE-599)DOAJd3aeabdbee054c77a83233b49b07b264 DE-627 ger DE-627 rakwb eng Amran Hossain verfasserin aut A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application. Medicine R Science Q Mohammad Tariqul Islam verfasserin aut Ali F. Almutairi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 27 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:27 https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/article/d3aeabdbee054c77a83233b49b07b264 kostenfrei https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 27 |
allfieldsSound |
10.1038/s41598-022-10309-6 doi (DE-627)DOAJ031997716 (DE-599)DOAJd3aeabdbee054c77a83233b49b07b264 DE-627 ger DE-627 rakwb eng Amran Hossain verfasserin aut A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application. Medicine R Science Q Mohammad Tariqul Islam verfasserin aut Ali F. Almutairi verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 27 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:27 https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/article/d3aeabdbee054c77a83233b49b07b264 kostenfrei https://doi.org/10.1038/s41598-022-10309-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 27 |
language |
English |
source |
In Scientific Reports 12(2022), 1, Seite 27 volume:12 year:2022 number:1 pages:27 |
sourceStr |
In Scientific Reports 12(2022), 1, Seite 27 volume:12 year:2022 number:1 pages:27 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Amran Hossain @@aut@@ Mohammad Tariqul Islam @@aut@@ Ali F. Almutairi @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ031997716 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ031997716</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307163945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-10309-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031997716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd3aeabdbee054c77a83233b49b07b264</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Amran Hossain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Tariqul Islam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali F. Almutairi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 27</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-10309-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d3aeabdbee054c77a83233b49b07b264</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-10309-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">27</subfield></datafield></record></collection>
|
author |
Amran Hossain |
spellingShingle |
Amran Hossain misc Medicine misc R misc Science misc Q A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system |
authorStr |
Amran Hossain |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system |
ctrlnum |
(DE-627)DOAJ031997716 (DE-599)DOAJd3aeabdbee054c77a83233b49b07b264 |
title_full |
A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system |
author_sort |
Amran Hossain |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
27 |
author_browse |
Amran Hossain Mohammad Tariqul Islam Ali F. Almutairi |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Amran Hossain |
doi_str_mv |
10.1038/s41598-022-10309-6 |
author2-role |
verfasserin |
title_sort |
deep learning model to classify and detect brain abnormalities in portable microwave based imaging system |
title_auth |
A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system |
abstract |
Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application. |
abstractGer |
Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application. |
abstract_unstemmed |
Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system |
url |
https://doi.org/10.1038/s41598-022-10309-6 https://doaj.org/article/d3aeabdbee054c77a83233b49b07b264 https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
Mohammad Tariqul Islam Ali F. Almutairi |
author2Str |
Mohammad Tariqul Islam Ali F. Almutairi |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-022-10309-6 |
up_date |
2024-07-03T23:29:08.367Z |
_version_ |
1803602465514323968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ031997716</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307163945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-10309-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ031997716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd3aeabdbee054c77a83233b49b07b264</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Amran Hossain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Automated classification and detection of brain abnormalities like a tumor(s) in reconstructed microwave (RMW) brain images are essential for medical application investigation and monitoring disease progression. This paper presents the automatic classification and detection of human brain abnormalities through the deep learning-based YOLOv5 object detection model in a portable microwave head imaging system (MWHI). Initially, four hundred RMW image samples, including non-tumor and tumor(s) in different locations are collected from the implemented MWHI system. The RMW image dimension is 640 × 640 pixels. After that, image pre-processing and augmentation techniques are applied to generate the training dataset, consisting of 4400 images. Later, 80% of images are used to train the models, and 20% are used for testing. Later, from the 80% training dataset, 20% are utilized to validate the models. The detection and classification performances are evaluated by three variations of the YOLOv5 model: YOLOv5s, YOLOv5m, and YOLOv5l. It is investigated that the YOLOv5l model performed better compared to YOLOv5s, YOLOv5m, and state-of-the-art object detection models. The achieved accuracy, precision, sensitivity, specificity, F1-score, mean average precision (mAP), and classification loss are 96.32%, 95.17%, 94.98%, 95.28%, 95.53%, 96.12%, and 0.0130, respectively for the YOLOv5l model. The YOLOv5l model automatically detected tumor(s) accurately with a predicted bounding box including objectness score in RMW images and classified the tumors into benign and malignant classes. So, the YOLOv5l object detection model can be reliable for automatic tumor(s) detection and classification in a portable microwave brain imaging system as a real-time application.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad Tariqul Islam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali F. Almutairi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 27</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-10309-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d3aeabdbee054c77a83233b49b07b264</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-10309-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">27</subfield></datafield></record></collection>
|
score |
7.402135 |