Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges
The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="h...
Ausführliche Beschreibung
Autor*in: |
Lan Yan [verfasserIn] Anna Jiang [verfasserIn] Feng Jiang [verfasserIn] Guangda Liu [verfasserIn] Fuzeng Wang [verfasserIn] Xian Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Micromachines - MDPI AG, 2010, 13(2022), 4, p 518 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2022 ; number:4, p 518 |
Links: |
---|
DOI / URN: |
10.3390/mi13040518 |
---|
Katalog-ID: |
DOAJ032091001 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ032091001 | ||
003 | DE-627 | ||
005 | 20240414074502.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/mi13040518 |2 doi | |
035 | |a (DE-627)DOAJ032091001 | ||
035 | |a (DE-599)DOAJe0b85025eb3c491a84245ee6386d8017 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ1-1570 | |
100 | 0 | |a Lan Yan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results. | ||
650 | 4 | |a flexure hinge | |
650 | 4 | |a micro-displacement | |
650 | 4 | |a four degrees of freedom | |
650 | 4 | |a finite element simulation | |
653 | 0 | |a Mechanical engineering and machinery | |
700 | 0 | |a Anna Jiang |e verfasserin |4 aut | |
700 | 0 | |a Feng Jiang |e verfasserin |4 aut | |
700 | 0 | |a Guangda Liu |e verfasserin |4 aut | |
700 | 0 | |a Fuzeng Wang |e verfasserin |4 aut | |
700 | 0 | |a Xian Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Micromachines |d MDPI AG, 2010 |g 13(2022), 4, p 518 |w (DE-627)665016069 |w (DE-600)2620864-7 |x 2072666X |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2022 |g number:4, p 518 |
856 | 4 | 0 | |u https://doi.org/10.3390/mi13040518 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e0b85025eb3c491a84245ee6386d8017 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-666X/13/4/518 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-666X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2022 |e 4, p 518 |
author_variant |
l y ly a j aj f j fj g l gl f w fw x w xw |
---|---|
matchkey_str |
article:2072666X:2022----::einnpromnenlssfmcoipaeetokal |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TJ |
publishDate |
2022 |
allfields |
10.3390/mi13040518 doi (DE-627)DOAJ032091001 (DE-599)DOAJe0b85025eb3c491a84245ee6386d8017 DE-627 ger DE-627 rakwb eng TJ1-1570 Lan Yan verfasserin aut Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results. flexure hinge micro-displacement four degrees of freedom finite element simulation Mechanical engineering and machinery Anna Jiang verfasserin aut Feng Jiang verfasserin aut Guangda Liu verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut In Micromachines MDPI AG, 2010 13(2022), 4, p 518 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:13 year:2022 number:4, p 518 https://doi.org/10.3390/mi13040518 kostenfrei https://doaj.org/article/e0b85025eb3c491a84245ee6386d8017 kostenfrei https://www.mdpi.com/2072-666X/13/4/518 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 4, p 518 |
spelling |
10.3390/mi13040518 doi (DE-627)DOAJ032091001 (DE-599)DOAJe0b85025eb3c491a84245ee6386d8017 DE-627 ger DE-627 rakwb eng TJ1-1570 Lan Yan verfasserin aut Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results. flexure hinge micro-displacement four degrees of freedom finite element simulation Mechanical engineering and machinery Anna Jiang verfasserin aut Feng Jiang verfasserin aut Guangda Liu verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut In Micromachines MDPI AG, 2010 13(2022), 4, p 518 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:13 year:2022 number:4, p 518 https://doi.org/10.3390/mi13040518 kostenfrei https://doaj.org/article/e0b85025eb3c491a84245ee6386d8017 kostenfrei https://www.mdpi.com/2072-666X/13/4/518 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 4, p 518 |
allfields_unstemmed |
10.3390/mi13040518 doi (DE-627)DOAJ032091001 (DE-599)DOAJe0b85025eb3c491a84245ee6386d8017 DE-627 ger DE-627 rakwb eng TJ1-1570 Lan Yan verfasserin aut Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results. flexure hinge micro-displacement four degrees of freedom finite element simulation Mechanical engineering and machinery Anna Jiang verfasserin aut Feng Jiang verfasserin aut Guangda Liu verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut In Micromachines MDPI AG, 2010 13(2022), 4, p 518 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:13 year:2022 number:4, p 518 https://doi.org/10.3390/mi13040518 kostenfrei https://doaj.org/article/e0b85025eb3c491a84245ee6386d8017 kostenfrei https://www.mdpi.com/2072-666X/13/4/518 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 4, p 518 |
allfieldsGer |
10.3390/mi13040518 doi (DE-627)DOAJ032091001 (DE-599)DOAJe0b85025eb3c491a84245ee6386d8017 DE-627 ger DE-627 rakwb eng TJ1-1570 Lan Yan verfasserin aut Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results. flexure hinge micro-displacement four degrees of freedom finite element simulation Mechanical engineering and machinery Anna Jiang verfasserin aut Feng Jiang verfasserin aut Guangda Liu verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut In Micromachines MDPI AG, 2010 13(2022), 4, p 518 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:13 year:2022 number:4, p 518 https://doi.org/10.3390/mi13040518 kostenfrei https://doaj.org/article/e0b85025eb3c491a84245ee6386d8017 kostenfrei https://www.mdpi.com/2072-666X/13/4/518 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 4, p 518 |
allfieldsSound |
10.3390/mi13040518 doi (DE-627)DOAJ032091001 (DE-599)DOAJe0b85025eb3c491a84245ee6386d8017 DE-627 ger DE-627 rakwb eng TJ1-1570 Lan Yan verfasserin aut Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results. flexure hinge micro-displacement four degrees of freedom finite element simulation Mechanical engineering and machinery Anna Jiang verfasserin aut Feng Jiang verfasserin aut Guangda Liu verfasserin aut Fuzeng Wang verfasserin aut Xian Wu verfasserin aut In Micromachines MDPI AG, 2010 13(2022), 4, p 518 (DE-627)665016069 (DE-600)2620864-7 2072666X nnns volume:13 year:2022 number:4, p 518 https://doi.org/10.3390/mi13040518 kostenfrei https://doaj.org/article/e0b85025eb3c491a84245ee6386d8017 kostenfrei https://www.mdpi.com/2072-666X/13/4/518 kostenfrei https://doaj.org/toc/2072-666X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 4, p 518 |
language |
English |
source |
In Micromachines 13(2022), 4, p 518 volume:13 year:2022 number:4, p 518 |
sourceStr |
In Micromachines 13(2022), 4, p 518 volume:13 year:2022 number:4, p 518 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
flexure hinge micro-displacement four degrees of freedom finite element simulation Mechanical engineering and machinery |
isfreeaccess_bool |
true |
container_title |
Micromachines |
authorswithroles_txt_mv |
Lan Yan @@aut@@ Anna Jiang @@aut@@ Feng Jiang @@aut@@ Guangda Liu @@aut@@ Fuzeng Wang @@aut@@ Xian Wu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
665016069 |
id |
DOAJ032091001 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032091001</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414074502.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mi13040518</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032091001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0b85025eb3c491a84245ee6386d8017</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lan Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexure hinge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-displacement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four degrees of freedom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangda Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fuzeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xian Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Micromachines</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2022), 4, p 518</subfield><subfield code="w">(DE-627)665016069</subfield><subfield code="w">(DE-600)2620864-7</subfield><subfield code="x">2072666X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 518</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mi13040518</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0b85025eb3c491a84245ee6386d8017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-666X/13/4/518</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-666X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 518</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Lan Yan |
spellingShingle |
Lan Yan misc TJ1-1570 misc flexure hinge misc micro-displacement misc four degrees of freedom misc finite element simulation misc Mechanical engineering and machinery Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges |
authorStr |
Lan Yan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)665016069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
2072666X |
topic_title |
TJ1-1570 Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges flexure hinge micro-displacement four degrees of freedom finite element simulation |
topic |
misc TJ1-1570 misc flexure hinge misc micro-displacement misc four degrees of freedom misc finite element simulation misc Mechanical engineering and machinery |
topic_unstemmed |
misc TJ1-1570 misc flexure hinge misc micro-displacement misc four degrees of freedom misc finite element simulation misc Mechanical engineering and machinery |
topic_browse |
misc TJ1-1570 misc flexure hinge misc micro-displacement misc four degrees of freedom misc finite element simulation misc Mechanical engineering and machinery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Micromachines |
hierarchy_parent_id |
665016069 |
hierarchy_top_title |
Micromachines |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)665016069 (DE-600)2620864-7 |
title |
Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges |
ctrlnum |
(DE-627)DOAJ032091001 (DE-599)DOAJe0b85025eb3c491a84245ee6386d8017 |
title_full |
Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges |
author_sort |
Lan Yan |
journal |
Micromachines |
journalStr |
Micromachines |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Lan Yan Anna Jiang Feng Jiang Guangda Liu Fuzeng Wang Xian Wu |
container_volume |
13 |
class |
TJ1-1570 |
format_se |
Elektronische Aufsätze |
author-letter |
Lan Yan |
doi_str_mv |
10.3390/mi13040518 |
author2-role |
verfasserin |
title_sort |
design and performance analysis of a micro-displacement worktable based on flexure hinges |
callnumber |
TJ1-1570 |
title_auth |
Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges |
abstract |
The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results. |
abstractGer |
The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results. |
abstract_unstemmed |
The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 518 |
title_short |
Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges |
url |
https://doi.org/10.3390/mi13040518 https://doaj.org/article/e0b85025eb3c491a84245ee6386d8017 https://www.mdpi.com/2072-666X/13/4/518 https://doaj.org/toc/2072-666X |
remote_bool |
true |
author2 |
Anna Jiang Feng Jiang Guangda Liu Fuzeng Wang Xian Wu |
author2Str |
Anna Jiang Feng Jiang Guangda Liu Fuzeng Wang Xian Wu |
ppnlink |
665016069 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/mi13040518 |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-03T23:53:16.825Z |
_version_ |
1803603984332619776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032091001</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414074502.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/mi13040518</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032091001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0b85025eb3c491a84245ee6386d8017</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lan Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula<) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<→</mo<</mrow<</mover<</semantics<</math<</inline-formula< was 1.67 µm and 1.74 µm. The maximum angle adjusted in the <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<X</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mover<<mi mathvariant="normal"<Z</mi<<mrow<<mo stretchy="false"<︵</mo<</mrow<</mover<</semantics<</math<</inline-formula< direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexure hinge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">micro-displacement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four degrees of freedom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite element simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangda Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fuzeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xian Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Micromachines</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2022), 4, p 518</subfield><subfield code="w">(DE-627)665016069</subfield><subfield code="w">(DE-600)2620864-7</subfield><subfield code="x">2072666X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 518</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/mi13040518</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0b85025eb3c491a84245ee6386d8017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-666X/13/4/518</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-666X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 518</subfield></datafield></record></collection>
|
score |
7.400342 |