Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state
We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an...
Ausführliche Beschreibung
Autor*in: |
Guodong Wang [verfasserIn] Yanbo Hu [verfasserIn] Huayong Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronic Journal of Differential Equations - Texas State University, 2003, (2017), 156,, Seite 18 |
---|---|
Übergeordnetes Werk: |
year:2017 ; number:156, ; pages:18 |
Links: |
---|
Katalog-ID: |
DOAJ032182740 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ032182740 | ||
003 | DE-627 | ||
005 | 20230307164907.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2017 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ032182740 | ||
035 | |a (DE-599)DOAJ3bbeee02ee1d483cb1d57580a5ad648f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Guodong Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence. | ||
650 | 4 | |a Nonlinear wave system | |
650 | 4 | |a generalized Chaplygin gas | |
650 | 4 | |a axisymmetry | |
650 | 4 | |a decoupled system | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Yanbo Hu |e verfasserin |4 aut | |
700 | 0 | |a Huayong Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronic Journal of Differential Equations |d Texas State University, 2003 |g (2017), 156,, Seite 18 |w (DE-627)320518205 |w (DE-600)2014226-2 |x 10726691 |7 nnns |
773 | 1 | 8 | |g year:2017 |g number:156, |g pages:18 |
856 | 4 | 0 | |u https://doaj.org/article/3bbeee02ee1d483cb1d57580a5ad648f |z kostenfrei |
856 | 4 | 0 | |u http://ejde.math.txstate.edu/Volumes/2017/156/abstr.html |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1072-6691 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2017 |e 156, |h 18 |
author_variant |
g w gw y h yh h l hl |
---|---|
matchkey_str |
article:10726691:2017----::xsmercouinoawdmninlolnawvssewtawc |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QA |
publishDate |
2017 |
allfields |
(DE-627)DOAJ032182740 (DE-599)DOAJ3bbeee02ee1d483cb1d57580a5ad648f DE-627 ger DE-627 rakwb eng QA1-939 Guodong Wang verfasserin aut Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence. Nonlinear wave system generalized Chaplygin gas axisymmetry decoupled system Mathematics Yanbo Hu verfasserin aut Huayong Liu verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2017), 156,, Seite 18 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2017 number:156, pages:18 https://doaj.org/article/3bbeee02ee1d483cb1d57580a5ad648f kostenfrei http://ejde.math.txstate.edu/Volumes/2017/156/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 156, 18 |
spelling |
(DE-627)DOAJ032182740 (DE-599)DOAJ3bbeee02ee1d483cb1d57580a5ad648f DE-627 ger DE-627 rakwb eng QA1-939 Guodong Wang verfasserin aut Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence. Nonlinear wave system generalized Chaplygin gas axisymmetry decoupled system Mathematics Yanbo Hu verfasserin aut Huayong Liu verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2017), 156,, Seite 18 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2017 number:156, pages:18 https://doaj.org/article/3bbeee02ee1d483cb1d57580a5ad648f kostenfrei http://ejde.math.txstate.edu/Volumes/2017/156/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 156, 18 |
allfields_unstemmed |
(DE-627)DOAJ032182740 (DE-599)DOAJ3bbeee02ee1d483cb1d57580a5ad648f DE-627 ger DE-627 rakwb eng QA1-939 Guodong Wang verfasserin aut Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence. Nonlinear wave system generalized Chaplygin gas axisymmetry decoupled system Mathematics Yanbo Hu verfasserin aut Huayong Liu verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2017), 156,, Seite 18 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2017 number:156, pages:18 https://doaj.org/article/3bbeee02ee1d483cb1d57580a5ad648f kostenfrei http://ejde.math.txstate.edu/Volumes/2017/156/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 156, 18 |
allfieldsGer |
(DE-627)DOAJ032182740 (DE-599)DOAJ3bbeee02ee1d483cb1d57580a5ad648f DE-627 ger DE-627 rakwb eng QA1-939 Guodong Wang verfasserin aut Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence. Nonlinear wave system generalized Chaplygin gas axisymmetry decoupled system Mathematics Yanbo Hu verfasserin aut Huayong Liu verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2017), 156,, Seite 18 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2017 number:156, pages:18 https://doaj.org/article/3bbeee02ee1d483cb1d57580a5ad648f kostenfrei http://ejde.math.txstate.edu/Volumes/2017/156/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 156, 18 |
allfieldsSound |
(DE-627)DOAJ032182740 (DE-599)DOAJ3bbeee02ee1d483cb1d57580a5ad648f DE-627 ger DE-627 rakwb eng QA1-939 Guodong Wang verfasserin aut Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence. Nonlinear wave system generalized Chaplygin gas axisymmetry decoupled system Mathematics Yanbo Hu verfasserin aut Huayong Liu verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2017), 156,, Seite 18 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2017 number:156, pages:18 https://doaj.org/article/3bbeee02ee1d483cb1d57580a5ad648f kostenfrei http://ejde.math.txstate.edu/Volumes/2017/156/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 156, 18 |
language |
English |
source |
In Electronic Journal of Differential Equations (2017), 156,, Seite 18 year:2017 number:156, pages:18 |
sourceStr |
In Electronic Journal of Differential Equations (2017), 156,, Seite 18 year:2017 number:156, pages:18 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nonlinear wave system generalized Chaplygin gas axisymmetry decoupled system Mathematics |
isfreeaccess_bool |
true |
container_title |
Electronic Journal of Differential Equations |
authorswithroles_txt_mv |
Guodong Wang @@aut@@ Yanbo Hu @@aut@@ Huayong Liu @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
320518205 |
id |
DOAJ032182740 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032182740</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307164907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032182740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3bbeee02ee1d483cb1d57580a5ad648f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guodong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear wave system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized Chaplygin gas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">axisymmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decoupled system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanbo Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huayong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Journal of Differential Equations</subfield><subfield code="d">Texas State University, 2003</subfield><subfield code="g">(2017), 156,, Seite 18</subfield><subfield code="w">(DE-627)320518205</subfield><subfield code="w">(DE-600)2014226-2</subfield><subfield code="x">10726691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield><subfield code="g">number:156,</subfield><subfield code="g">pages:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3bbeee02ee1d483cb1d57580a5ad648f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ejde.math.txstate.edu/Volumes/2017/156/abstr.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1072-6691</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield><subfield code="e">156,</subfield><subfield code="h">18</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Guodong Wang |
spellingShingle |
Guodong Wang misc QA1-939 misc Nonlinear wave system misc generalized Chaplygin gas misc axisymmetry misc decoupled system misc Mathematics Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state |
authorStr |
Guodong Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320518205 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
10726691 |
topic_title |
QA1-939 Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state Nonlinear wave system generalized Chaplygin gas axisymmetry decoupled system |
topic |
misc QA1-939 misc Nonlinear wave system misc generalized Chaplygin gas misc axisymmetry misc decoupled system misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Nonlinear wave system misc generalized Chaplygin gas misc axisymmetry misc decoupled system misc Mathematics |
topic_browse |
misc QA1-939 misc Nonlinear wave system misc generalized Chaplygin gas misc axisymmetry misc decoupled system misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronic Journal of Differential Equations |
hierarchy_parent_id |
320518205 |
hierarchy_top_title |
Electronic Journal of Differential Equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320518205 (DE-600)2014226-2 |
title |
Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state |
ctrlnum |
(DE-627)DOAJ032182740 (DE-599)DOAJ3bbeee02ee1d483cb1d57580a5ad648f |
title_full |
Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state |
author_sort |
Guodong Wang |
journal |
Electronic Journal of Differential Equations |
journalStr |
Electronic Journal of Differential Equations |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
18 |
author_browse |
Guodong Wang Yanbo Hu Huayong Liu |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Guodong Wang |
author2-role |
verfasserin |
title_sort |
axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state |
callnumber |
QA1-939 |
title_auth |
Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state |
abstract |
We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence. |
abstractGer |
We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence. |
abstract_unstemmed |
We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
156, |
title_short |
Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state |
url |
https://doaj.org/article/3bbeee02ee1d483cb1d57580a5ad648f http://ejde.math.txstate.edu/Volumes/2017/156/abstr.html https://doaj.org/toc/1072-6691 |
remote_bool |
true |
author2 |
Yanbo Hu Huayong Liu |
author2Str |
Yanbo Hu Huayong Liu |
ppnlink |
320518205 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T00:15:46.042Z |
_version_ |
1803605399092330496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032182740</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307164907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032182740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3bbeee02ee1d483cb1d57580a5ad648f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guodong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Axisymmetric solutions of a two-dimensional nonlinear wave system with a two-constant equation of state</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We study a special class of Riemann problem with axisymmetry for two-dimensional nonlinear wave equations with the equation of state $p=A_1\rho^{\gamma_1}+A_2\rho^{\gamma_2}$, $A_i<0$, $-3<\gamma_i<-1$ (i=1,2). The main difficulty lies in that the equations can not be directly reduced to an autonomous system of ordinary differential equations. To solve it, we use the axisymmetry and self-similarity assumptions to reduce the equations to a decoupled system which includes three components of solution. By solving the decoupled system, we obtain the structures of the corresponding solutions and their existence.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear wave system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized Chaplygin gas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">axisymmetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decoupled system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanbo Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huayong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Journal of Differential Equations</subfield><subfield code="d">Texas State University, 2003</subfield><subfield code="g">(2017), 156,, Seite 18</subfield><subfield code="w">(DE-627)320518205</subfield><subfield code="w">(DE-600)2014226-2</subfield><subfield code="x">10726691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield><subfield code="g">number:156,</subfield><subfield code="g">pages:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3bbeee02ee1d483cb1d57580a5ad648f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ejde.math.txstate.edu/Volumes/2017/156/abstr.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1072-6691</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield><subfield code="e">156,</subfield><subfield code="h">18</subfield></datafield></record></collection>
|
score |
7.4021244 |