Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach
With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods,...
Ausführliche Beschreibung
Autor*in: |
Zhenzhen He [verfasserIn] Jiong Yu [verfasserIn] Binglei Guo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Symmetry - MDPI AG, 2009, 14(2022), 1, p 55 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:1, p 55 |
Links: |
---|
DOI / URN: |
10.3390/sym14010055 |
---|
Katalog-ID: |
DOAJ032547730 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ032547730 | ||
003 | DE-627 | ||
005 | 20240414205744.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/sym14010055 |2 doi | |
035 | |a (DE-627)DOAJ032547730 | ||
035 | |a (DE-599)DOAJ0881570387fb46f9a6322becdcdfc24d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Zhenzhen He |e verfasserin |4 aut | |
245 | 1 | 0 | |a Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets. | ||
650 | 4 | |a Cypher queries | |
650 | 4 | |a pattern queries | |
650 | 4 | |a query plan tree | |
650 | 4 | |a execution time prediction | |
650 | 4 | |a Neo4j database | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Jiong Yu |e verfasserin |4 aut | |
700 | 0 | |a Binglei Guo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Symmetry |d MDPI AG, 2009 |g 14(2022), 1, p 55 |w (DE-627)610604112 |w (DE-600)2518382-5 |x 20738994 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:1, p 55 |
856 | 4 | 0 | |u https://doi.org/10.3390/sym14010055 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0881570387fb46f9a6322becdcdfc24d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-8994/14/1/55 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-8994 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 1, p 55 |
author_variant |
z h zh j y jy b g bg |
---|---|
matchkey_str |
article:20738994:2022----::xctotmpeitofryhrureitee4dtbs |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QA |
publishDate |
2022 |
allfields |
10.3390/sym14010055 doi (DE-627)DOAJ032547730 (DE-599)DOAJ0881570387fb46f9a6322becdcdfc24d DE-627 ger DE-627 rakwb eng QA1-939 Zhenzhen He verfasserin aut Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets. Cypher queries pattern queries query plan tree execution time prediction Neo4j database Mathematics Jiong Yu verfasserin aut Binglei Guo verfasserin aut In Symmetry MDPI AG, 2009 14(2022), 1, p 55 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:14 year:2022 number:1, p 55 https://doi.org/10.3390/sym14010055 kostenfrei https://doaj.org/article/0881570387fb46f9a6322becdcdfc24d kostenfrei https://www.mdpi.com/2073-8994/14/1/55 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 55 |
spelling |
10.3390/sym14010055 doi (DE-627)DOAJ032547730 (DE-599)DOAJ0881570387fb46f9a6322becdcdfc24d DE-627 ger DE-627 rakwb eng QA1-939 Zhenzhen He verfasserin aut Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets. Cypher queries pattern queries query plan tree execution time prediction Neo4j database Mathematics Jiong Yu verfasserin aut Binglei Guo verfasserin aut In Symmetry MDPI AG, 2009 14(2022), 1, p 55 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:14 year:2022 number:1, p 55 https://doi.org/10.3390/sym14010055 kostenfrei https://doaj.org/article/0881570387fb46f9a6322becdcdfc24d kostenfrei https://www.mdpi.com/2073-8994/14/1/55 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 55 |
allfields_unstemmed |
10.3390/sym14010055 doi (DE-627)DOAJ032547730 (DE-599)DOAJ0881570387fb46f9a6322becdcdfc24d DE-627 ger DE-627 rakwb eng QA1-939 Zhenzhen He verfasserin aut Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets. Cypher queries pattern queries query plan tree execution time prediction Neo4j database Mathematics Jiong Yu verfasserin aut Binglei Guo verfasserin aut In Symmetry MDPI AG, 2009 14(2022), 1, p 55 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:14 year:2022 number:1, p 55 https://doi.org/10.3390/sym14010055 kostenfrei https://doaj.org/article/0881570387fb46f9a6322becdcdfc24d kostenfrei https://www.mdpi.com/2073-8994/14/1/55 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 55 |
allfieldsGer |
10.3390/sym14010055 doi (DE-627)DOAJ032547730 (DE-599)DOAJ0881570387fb46f9a6322becdcdfc24d DE-627 ger DE-627 rakwb eng QA1-939 Zhenzhen He verfasserin aut Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets. Cypher queries pattern queries query plan tree execution time prediction Neo4j database Mathematics Jiong Yu verfasserin aut Binglei Guo verfasserin aut In Symmetry MDPI AG, 2009 14(2022), 1, p 55 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:14 year:2022 number:1, p 55 https://doi.org/10.3390/sym14010055 kostenfrei https://doaj.org/article/0881570387fb46f9a6322becdcdfc24d kostenfrei https://www.mdpi.com/2073-8994/14/1/55 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 55 |
allfieldsSound |
10.3390/sym14010055 doi (DE-627)DOAJ032547730 (DE-599)DOAJ0881570387fb46f9a6322becdcdfc24d DE-627 ger DE-627 rakwb eng QA1-939 Zhenzhen He verfasserin aut Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets. Cypher queries pattern queries query plan tree execution time prediction Neo4j database Mathematics Jiong Yu verfasserin aut Binglei Guo verfasserin aut In Symmetry MDPI AG, 2009 14(2022), 1, p 55 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:14 year:2022 number:1, p 55 https://doi.org/10.3390/sym14010055 kostenfrei https://doaj.org/article/0881570387fb46f9a6322becdcdfc24d kostenfrei https://www.mdpi.com/2073-8994/14/1/55 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2022 1, p 55 |
language |
English |
source |
In Symmetry 14(2022), 1, p 55 volume:14 year:2022 number:1, p 55 |
sourceStr |
In Symmetry 14(2022), 1, p 55 volume:14 year:2022 number:1, p 55 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cypher queries pattern queries query plan tree execution time prediction Neo4j database Mathematics |
isfreeaccess_bool |
true |
container_title |
Symmetry |
authorswithroles_txt_mv |
Zhenzhen He @@aut@@ Jiong Yu @@aut@@ Binglei Guo @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
610604112 |
id |
DOAJ032547730 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032547730</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414205744.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/sym14010055</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032547730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0881570387fb46f9a6322becdcdfc24d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenzhen He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cypher queries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pattern queries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">query plan tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">execution time prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neo4j database</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiong Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binglei Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Symmetry</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 1, p 55</subfield><subfield code="w">(DE-627)610604112</subfield><subfield code="w">(DE-600)2518382-5</subfield><subfield code="x">20738994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 55</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/sym14010055</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0881570387fb46f9a6322becdcdfc24d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-8994/14/1/55</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-8994</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 55</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Zhenzhen He |
spellingShingle |
Zhenzhen He misc QA1-939 misc Cypher queries misc pattern queries misc query plan tree misc execution time prediction misc Neo4j database misc Mathematics Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach |
authorStr |
Zhenzhen He |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604112 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
20738994 |
topic_title |
QA1-939 Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach Cypher queries pattern queries query plan tree execution time prediction Neo4j database |
topic |
misc QA1-939 misc Cypher queries misc pattern queries misc query plan tree misc execution time prediction misc Neo4j database misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Cypher queries misc pattern queries misc query plan tree misc execution time prediction misc Neo4j database misc Mathematics |
topic_browse |
misc QA1-939 misc Cypher queries misc pattern queries misc query plan tree misc execution time prediction misc Neo4j database misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Symmetry |
hierarchy_parent_id |
610604112 |
hierarchy_top_title |
Symmetry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604112 (DE-600)2518382-5 |
title |
Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach |
ctrlnum |
(DE-627)DOAJ032547730 (DE-599)DOAJ0881570387fb46f9a6322becdcdfc24d |
title_full |
Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach |
author_sort |
Zhenzhen He |
journal |
Symmetry |
journalStr |
Symmetry |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Zhenzhen He Jiong Yu Binglei Guo |
container_volume |
14 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhenzhen He |
doi_str_mv |
10.3390/sym14010055 |
author2-role |
verfasserin |
title_sort |
execution time prediction for cypher queries in the neo4j database using a learning approach |
callnumber |
QA1-939 |
title_auth |
Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach |
abstract |
With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets. |
abstractGer |
With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets. |
abstract_unstemmed |
With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 55 |
title_short |
Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach |
url |
https://doi.org/10.3390/sym14010055 https://doaj.org/article/0881570387fb46f9a6322becdcdfc24d https://www.mdpi.com/2073-8994/14/1/55 https://doaj.org/toc/2073-8994 |
remote_bool |
true |
author2 |
Jiong Yu Binglei Guo |
author2Str |
Jiong Yu Binglei Guo |
ppnlink |
610604112 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/sym14010055 |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T01:36:53.148Z |
_version_ |
1803610502622871552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032547730</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414205744.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/sym14010055</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032547730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0881570387fb46f9a6322becdcdfc24d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenzhen He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With database management systems becoming complex, predicting the execution time of graph queries before they are executed is one of the challenges for query scheduling, workload management, resource allocation, and progress monitoring. Through the comparison of query performance prediction methods, existing research works have solved such problems in traditional SQL queries, but they cannot be directly applied in Cypher queries on the Neo4j database. Additionally, most query performance prediction methods focus on measuring the relationship between correlation coefficients and retrieval performance. Inspired by machine-learning methods and graph query optimization technologies, we used the RBF neural network as a prediction model to train and predict the execution time of Cypher queries. Meanwhile, the corresponding query pattern features, graph data features, and query plan features were fused together and then used to train our prediction models. Furthermore, we also deployed a monitor node and designed a Cypher query benchmark for the database clusters to obtain the query plan information and native data store. The experimental results of four benchmarks showed that the average mean relative error of the RBF model reached 16.5% in the Northwind dataset, 12% in the FIFA2021 dataset, and 16.25% in the CORD-19 dataset. This experiment proves the effectiveness of our proposed approach on three real-world datasets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cypher queries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pattern queries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">query plan tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">execution time prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neo4j database</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiong Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Binglei Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Symmetry</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 1, p 55</subfield><subfield code="w">(DE-627)610604112</subfield><subfield code="w">(DE-600)2518382-5</subfield><subfield code="x">20738994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 55</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/sym14010055</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0881570387fb46f9a6322becdcdfc24d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-8994/14/1/55</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-8994</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 55</subfield></datafield></record></collection>
|
score |
7.399907 |