A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms
To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed con...
Ausführliche Beschreibung
Autor*in: |
Hui Liu [verfasserIn] Peng Wang [verfasserIn] Teyang Zhao [verfasserIn] Zhenggang Fan [verfasserIn] Houlin Pan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 8, p 2722 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:8, p 2722 |
Links: |
---|
DOI / URN: |
10.3390/en15082722 |
---|
Katalog-ID: |
DOAJ032572603 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ032572603 | ||
003 | DE-627 | ||
005 | 20240414114224.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15082722 |2 doi | |
035 | |a (DE-627)DOAJ032572603 | ||
035 | |a (DE-599)DOAJ00070c9b344f47d09727d9d645bcc1f9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Hui Liu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations. | ||
650 | 4 | |a frequency stability | |
650 | 4 | |a deloading control | |
650 | 4 | |a frequency regulation capability | |
650 | 4 | |a droop control | |
650 | 4 | |a exponential membership function | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Peng Wang |e verfasserin |4 aut | |
700 | 0 | |a Teyang Zhao |e verfasserin |4 aut | |
700 | 0 | |a Zhenggang Fan |e verfasserin |4 aut | |
700 | 0 | |a Houlin Pan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 8, p 2722 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:8, p 2722 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15082722 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/00070c9b344f47d09727d9d645bcc1f9 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/8/2722 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 8, p 2722 |
author_variant |
h l hl p w pw t z tz z f zf h p hp |
---|---|
matchkey_str |
article:19961073:2022----::gopaedopotosrtgcnieigicagertci |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15082722 doi (DE-627)DOAJ032572603 (DE-599)DOAJ00070c9b344f47d09727d9d645bcc1f9 DE-627 ger DE-627 rakwb eng Hui Liu verfasserin aut A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations. frequency stability deloading control frequency regulation capability droop control exponential membership function Technology T Peng Wang verfasserin aut Teyang Zhao verfasserin aut Zhenggang Fan verfasserin aut Houlin Pan verfasserin aut In Energies MDPI AG, 2008 15(2022), 8, p 2722 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:8, p 2722 https://doi.org/10.3390/en15082722 kostenfrei https://doaj.org/article/00070c9b344f47d09727d9d645bcc1f9 kostenfrei https://www.mdpi.com/1996-1073/15/8/2722 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 8, p 2722 |
spelling |
10.3390/en15082722 doi (DE-627)DOAJ032572603 (DE-599)DOAJ00070c9b344f47d09727d9d645bcc1f9 DE-627 ger DE-627 rakwb eng Hui Liu verfasserin aut A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations. frequency stability deloading control frequency regulation capability droop control exponential membership function Technology T Peng Wang verfasserin aut Teyang Zhao verfasserin aut Zhenggang Fan verfasserin aut Houlin Pan verfasserin aut In Energies MDPI AG, 2008 15(2022), 8, p 2722 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:8, p 2722 https://doi.org/10.3390/en15082722 kostenfrei https://doaj.org/article/00070c9b344f47d09727d9d645bcc1f9 kostenfrei https://www.mdpi.com/1996-1073/15/8/2722 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 8, p 2722 |
allfields_unstemmed |
10.3390/en15082722 doi (DE-627)DOAJ032572603 (DE-599)DOAJ00070c9b344f47d09727d9d645bcc1f9 DE-627 ger DE-627 rakwb eng Hui Liu verfasserin aut A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations. frequency stability deloading control frequency regulation capability droop control exponential membership function Technology T Peng Wang verfasserin aut Teyang Zhao verfasserin aut Zhenggang Fan verfasserin aut Houlin Pan verfasserin aut In Energies MDPI AG, 2008 15(2022), 8, p 2722 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:8, p 2722 https://doi.org/10.3390/en15082722 kostenfrei https://doaj.org/article/00070c9b344f47d09727d9d645bcc1f9 kostenfrei https://www.mdpi.com/1996-1073/15/8/2722 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 8, p 2722 |
allfieldsGer |
10.3390/en15082722 doi (DE-627)DOAJ032572603 (DE-599)DOAJ00070c9b344f47d09727d9d645bcc1f9 DE-627 ger DE-627 rakwb eng Hui Liu verfasserin aut A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations. frequency stability deloading control frequency regulation capability droop control exponential membership function Technology T Peng Wang verfasserin aut Teyang Zhao verfasserin aut Zhenggang Fan verfasserin aut Houlin Pan verfasserin aut In Energies MDPI AG, 2008 15(2022), 8, p 2722 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:8, p 2722 https://doi.org/10.3390/en15082722 kostenfrei https://doaj.org/article/00070c9b344f47d09727d9d645bcc1f9 kostenfrei https://www.mdpi.com/1996-1073/15/8/2722 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 8, p 2722 |
allfieldsSound |
10.3390/en15082722 doi (DE-627)DOAJ032572603 (DE-599)DOAJ00070c9b344f47d09727d9d645bcc1f9 DE-627 ger DE-627 rakwb eng Hui Liu verfasserin aut A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations. frequency stability deloading control frequency regulation capability droop control exponential membership function Technology T Peng Wang verfasserin aut Teyang Zhao verfasserin aut Zhenggang Fan verfasserin aut Houlin Pan verfasserin aut In Energies MDPI AG, 2008 15(2022), 8, p 2722 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:8, p 2722 https://doi.org/10.3390/en15082722 kostenfrei https://doaj.org/article/00070c9b344f47d09727d9d645bcc1f9 kostenfrei https://www.mdpi.com/1996-1073/15/8/2722 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 8, p 2722 |
language |
English |
source |
In Energies 15(2022), 8, p 2722 volume:15 year:2022 number:8, p 2722 |
sourceStr |
In Energies 15(2022), 8, p 2722 volume:15 year:2022 number:8, p 2722 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
frequency stability deloading control frequency regulation capability droop control exponential membership function Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Hui Liu @@aut@@ Peng Wang @@aut@@ Teyang Zhao @@aut@@ Zhenggang Fan @@aut@@ Houlin Pan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ032572603 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032572603</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414114224.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15082722</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032572603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ00070c9b344f47d09727d9d645bcc1f9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hui Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deloading control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency regulation capability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">droop control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponential membership function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teyang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenggang Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houlin Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 8, p 2722</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 2722</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15082722</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/00070c9b344f47d09727d9d645bcc1f9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/8/2722</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 2722</subfield></datafield></record></collection>
|
author |
Hui Liu |
spellingShingle |
Hui Liu misc frequency stability misc deloading control misc frequency regulation capability misc droop control misc exponential membership function misc Technology misc T A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms |
authorStr |
Hui Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms frequency stability deloading control frequency regulation capability droop control exponential membership function |
topic |
misc frequency stability misc deloading control misc frequency regulation capability misc droop control misc exponential membership function misc Technology misc T |
topic_unstemmed |
misc frequency stability misc deloading control misc frequency regulation capability misc droop control misc exponential membership function misc Technology misc T |
topic_browse |
misc frequency stability misc deloading control misc frequency regulation capability misc droop control misc exponential membership function misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms |
ctrlnum |
(DE-627)DOAJ032572603 (DE-599)DOAJ00070c9b344f47d09727d9d645bcc1f9 |
title_full |
A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms |
author_sort |
Hui Liu |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Hui Liu Peng Wang Teyang Zhao Zhenggang Fan Houlin Pan |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Hui Liu |
doi_str_mv |
10.3390/en15082722 |
author2-role |
verfasserin |
title_sort |
group-based droop control strategy considering pitch angle protection to deloaded wind farms |
title_auth |
A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms |
abstract |
To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations. |
abstractGer |
To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations. |
abstract_unstemmed |
To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 2722 |
title_short |
A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms |
url |
https://doi.org/10.3390/en15082722 https://doaj.org/article/00070c9b344f47d09727d9d645bcc1f9 https://www.mdpi.com/1996-1073/15/8/2722 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Peng Wang Teyang Zhao Zhenggang Fan Houlin Pan |
author2Str |
Peng Wang Teyang Zhao Zhenggang Fan Houlin Pan |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15082722 |
up_date |
2024-07-04T01:42:26.004Z |
_version_ |
1803610851647684608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032572603</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414114224.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15082722</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032572603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ00070c9b344f47d09727d9d645bcc1f9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hui Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Group-Based Droop Control Strategy Considering Pitch Angle Protection to Deloaded Wind Farms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To promote the frequency stability of a system with high penetration of wind power integrated into it, this paper presents a systematic frequency regulation strategy for wind farms (WFs). As preparation for frequency response, a coordinated deloading control (CDC) scheme combining the over-speed control (OSC) and the pitch angle control (PAC) methods is proposed for wind turbine generators (WTGs) to preserve power reserve. The novelty lies in the consideration of high wind speed situations and pitch angle protection. Then, a group-based droop control (GBDC) scheme is proposed for a WF consisting of WTGs with the CDC. In this scheme, WTGs are divided into two groups for different controls. To improve the frequency response performance and ensure stable operation, the droop coefficients of the WF, groups, and all WTGs are determined according to their frequency regulation capabilities (FRCs). Moreover, pitch angle protection during the frequency response process is considered in this scheme. The effectiveness of the GBDC scheme is verified by comparing it with several existing droop control schemes in various situations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deloading control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency regulation capability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">droop control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exponential membership function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teyang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenggang Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Houlin Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 8, p 2722</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 2722</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15082722</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/00070c9b344f47d09727d9d645bcc1f9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/8/2722</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 2722</subfield></datafield></record></collection>
|
score |
7.401332 |