Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing
With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due t...
Ausführliche Beschreibung
Autor*in: |
Kishwer Abdul Khaliq [verfasserIn] Omer Chughtai [verfasserIn] Abdullah Shahwani [verfasserIn] Amir Qayyum [verfasserIn] Jürgen Pannek [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 8(2019), 8, p 896 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2019 ; number:8, p 896 |
Links: |
---|
DOI / URN: |
10.3390/electronics8080896 |
---|
Katalog-ID: |
DOAJ032643926 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ032643926 | ||
003 | DE-627 | ||
005 | 20230307171514.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics8080896 |2 doi | |
035 | |a (DE-627)DOAJ032643926 | ||
035 | |a (DE-599)DOAJa2912f6bf1674c8891909844a8ada8c6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Kishwer Abdul Khaliq |e verfasserin |4 aut | |
245 | 1 | 0 | |a Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data. | ||
650 | 4 | |a V2X communication | |
650 | 4 | |a VANET | |
650 | 4 | |a cloud computing | |
650 | 4 | |a accident detection | |
650 | 4 | |a sensors | |
650 | 4 | |a safety alert | |
650 | 4 | |a data analysis | |
650 | 4 | |a edge computing | |
653 | 0 | |a Electronics | |
700 | 0 | |a Omer Chughtai |e verfasserin |4 aut | |
700 | 0 | |a Abdullah Shahwani |e verfasserin |4 aut | |
700 | 0 | |a Amir Qayyum |e verfasserin |4 aut | |
700 | 0 | |a Jürgen Pannek |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 8(2019), 8, p 896 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2019 |g number:8, p 896 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics8080896 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a2912f6bf1674c8891909844a8ada8c6 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/8/8/896 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2019 |e 8, p 896 |
author_variant |
k a k kak o c oc a s as a q aq j p jp |
---|---|
matchkey_str |
article:20799292:2019----::odcietdtcinaaolcinndtaayiuig2cmuia |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.3390/electronics8080896 doi (DE-627)DOAJ032643926 (DE-599)DOAJa2912f6bf1674c8891909844a8ada8c6 DE-627 ger DE-627 rakwb eng TK7800-8360 Kishwer Abdul Khaliq verfasserin aut Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data. V2X communication VANET cloud computing accident detection sensors safety alert data analysis edge computing Electronics Omer Chughtai verfasserin aut Abdullah Shahwani verfasserin aut Amir Qayyum verfasserin aut Jürgen Pannek verfasserin aut In Electronics MDPI AG, 2013 8(2019), 8, p 896 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:8 year:2019 number:8, p 896 https://doi.org/10.3390/electronics8080896 kostenfrei https://doaj.org/article/a2912f6bf1674c8891909844a8ada8c6 kostenfrei https://www.mdpi.com/2079-9292/8/8/896 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8, p 896 |
spelling |
10.3390/electronics8080896 doi (DE-627)DOAJ032643926 (DE-599)DOAJa2912f6bf1674c8891909844a8ada8c6 DE-627 ger DE-627 rakwb eng TK7800-8360 Kishwer Abdul Khaliq verfasserin aut Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data. V2X communication VANET cloud computing accident detection sensors safety alert data analysis edge computing Electronics Omer Chughtai verfasserin aut Abdullah Shahwani verfasserin aut Amir Qayyum verfasserin aut Jürgen Pannek verfasserin aut In Electronics MDPI AG, 2013 8(2019), 8, p 896 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:8 year:2019 number:8, p 896 https://doi.org/10.3390/electronics8080896 kostenfrei https://doaj.org/article/a2912f6bf1674c8891909844a8ada8c6 kostenfrei https://www.mdpi.com/2079-9292/8/8/896 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8, p 896 |
allfields_unstemmed |
10.3390/electronics8080896 doi (DE-627)DOAJ032643926 (DE-599)DOAJa2912f6bf1674c8891909844a8ada8c6 DE-627 ger DE-627 rakwb eng TK7800-8360 Kishwer Abdul Khaliq verfasserin aut Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data. V2X communication VANET cloud computing accident detection sensors safety alert data analysis edge computing Electronics Omer Chughtai verfasserin aut Abdullah Shahwani verfasserin aut Amir Qayyum verfasserin aut Jürgen Pannek verfasserin aut In Electronics MDPI AG, 2013 8(2019), 8, p 896 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:8 year:2019 number:8, p 896 https://doi.org/10.3390/electronics8080896 kostenfrei https://doaj.org/article/a2912f6bf1674c8891909844a8ada8c6 kostenfrei https://www.mdpi.com/2079-9292/8/8/896 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8, p 896 |
allfieldsGer |
10.3390/electronics8080896 doi (DE-627)DOAJ032643926 (DE-599)DOAJa2912f6bf1674c8891909844a8ada8c6 DE-627 ger DE-627 rakwb eng TK7800-8360 Kishwer Abdul Khaliq verfasserin aut Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data. V2X communication VANET cloud computing accident detection sensors safety alert data analysis edge computing Electronics Omer Chughtai verfasserin aut Abdullah Shahwani verfasserin aut Amir Qayyum verfasserin aut Jürgen Pannek verfasserin aut In Electronics MDPI AG, 2013 8(2019), 8, p 896 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:8 year:2019 number:8, p 896 https://doi.org/10.3390/electronics8080896 kostenfrei https://doaj.org/article/a2912f6bf1674c8891909844a8ada8c6 kostenfrei https://www.mdpi.com/2079-9292/8/8/896 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8, p 896 |
allfieldsSound |
10.3390/electronics8080896 doi (DE-627)DOAJ032643926 (DE-599)DOAJa2912f6bf1674c8891909844a8ada8c6 DE-627 ger DE-627 rakwb eng TK7800-8360 Kishwer Abdul Khaliq verfasserin aut Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data. V2X communication VANET cloud computing accident detection sensors safety alert data analysis edge computing Electronics Omer Chughtai verfasserin aut Abdullah Shahwani verfasserin aut Amir Qayyum verfasserin aut Jürgen Pannek verfasserin aut In Electronics MDPI AG, 2013 8(2019), 8, p 896 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:8 year:2019 number:8, p 896 https://doi.org/10.3390/electronics8080896 kostenfrei https://doaj.org/article/a2912f6bf1674c8891909844a8ada8c6 kostenfrei https://www.mdpi.com/2079-9292/8/8/896 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8, p 896 |
language |
English |
source |
In Electronics 8(2019), 8, p 896 volume:8 year:2019 number:8, p 896 |
sourceStr |
In Electronics 8(2019), 8, p 896 volume:8 year:2019 number:8, p 896 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
V2X communication VANET cloud computing accident detection sensors safety alert data analysis edge computing Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Kishwer Abdul Khaliq @@aut@@ Omer Chughtai @@aut@@ Abdullah Shahwani @@aut@@ Amir Qayyum @@aut@@ Jürgen Pannek @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ032643926 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032643926</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307171514.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics8080896</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032643926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa2912f6bf1674c8891909844a8ada8c6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kishwer Abdul Khaliq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">V2X communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VANET</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accident detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">safety alert</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">edge computing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Omer Chughtai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdullah Shahwani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amir Qayyum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jürgen Pannek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2019), 8, p 896</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8, p 896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics8080896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a2912f6bf1674c8891909844a8ada8c6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/8/8/896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2019</subfield><subfield code="e">8, p 896</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Kishwer Abdul Khaliq |
spellingShingle |
Kishwer Abdul Khaliq misc TK7800-8360 misc V2X communication misc VANET misc cloud computing misc accident detection misc sensors misc safety alert misc data analysis misc edge computing misc Electronics Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing |
authorStr |
Kishwer Abdul Khaliq |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing V2X communication VANET cloud computing accident detection sensors safety alert data analysis edge computing |
topic |
misc TK7800-8360 misc V2X communication misc VANET misc cloud computing misc accident detection misc sensors misc safety alert misc data analysis misc edge computing misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc V2X communication misc VANET misc cloud computing misc accident detection misc sensors misc safety alert misc data analysis misc edge computing misc Electronics |
topic_browse |
misc TK7800-8360 misc V2X communication misc VANET misc cloud computing misc accident detection misc sensors misc safety alert misc data analysis misc edge computing misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing |
ctrlnum |
(DE-627)DOAJ032643926 (DE-599)DOAJa2912f6bf1674c8891909844a8ada8c6 |
title_full |
Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing |
author_sort |
Kishwer Abdul Khaliq |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Kishwer Abdul Khaliq Omer Chughtai Abdullah Shahwani Amir Qayyum Jürgen Pannek |
container_volume |
8 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Kishwer Abdul Khaliq |
doi_str_mv |
10.3390/electronics8080896 |
author2-role |
verfasserin |
title_sort |
road accidents detection, data collection and data analysis using v2x communication and edge/cloud computing |
callnumber |
TK7800-8360 |
title_auth |
Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing |
abstract |
With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data. |
abstractGer |
With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data. |
abstract_unstemmed |
With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 896 |
title_short |
Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing |
url |
https://doi.org/10.3390/electronics8080896 https://doaj.org/article/a2912f6bf1674c8891909844a8ada8c6 https://www.mdpi.com/2079-9292/8/8/896 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Omer Chughtai Abdullah Shahwani Amir Qayyum Jürgen Pannek |
author2Str |
Omer Chughtai Abdullah Shahwani Amir Qayyum Jürgen Pannek |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics8080896 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-04T01:58:46.901Z |
_version_ |
1803611880190640128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032643926</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307171514.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics8080896</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032643926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa2912f6bf1674c8891909844a8ada8c6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kishwer Abdul Khaliq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the improvement in transportation infrastructure and in-vehicle technology in addition to a meteoric increase in the total number of commercial and non-commercial vehicles on the road, traffic accidents may occur, which usually cause a high death toll. More than half of these deaths occur due to a delayed response by medical care providers and rescue authorities. The chances of survival of an accident victim could increase drastically if immediate medical assistance is provided at an accident location. This work proposes a low-cost accident detection and notification system, which utilizes a multi-tier IoT-based vehicular environment; principally, it uses V2X Communication and Edge/Cloud computing. In this work, vehicles are equipped with an On-Board Unit (OBU) in addition to mechanical sensors (accelerometer, gyroscope) for reliable accident detection along with a Global Positioning System (GPS) module for identification of accident location. In addition to this, a camera module is implanted on the vehicle to capture the moment when an accident takes place. In order to facilitate inter-vehicle communication (IVC), OBU in each vehicle incorporates a wireless networking interface. Once an accident occurs, a vehicle detects it and generates an alert message. It then sends the message along with the accident location to an intermediate device, placed at the edge of the vehicular network, and therefore called an edge device. Upon receiving the notification, this edge device finds the nearest hospital and makes a request for an ambulance to be dispatched immediately. It also performs some preprocessing of data and effectively acts as a bridge between the sensors installed inside the vehicle and the distant server deployed in the cloud. A significant issue that the traffic authorities are currently facing is the real-time visualization of data obtained through such environments. Wireless interfaces are usually capable of forwarding real-time sensor data; however, this feature is not yet commercially available in the OBU of the vehicle; therefore, practical implementation is carried out using the Internet of things (IoT) in order to create a network among the vehicles, the edge node, and the central server. By performing analysis on the adequate acquired data of road accidents, the constructive plans of action can be devised that may limit the death toll. In order to assist the relevant authorities in performing wholesome analysis of refined and reliable data, a dynamic front-end visualization is proposed, which is hosted in the cloud. The generated charts and graphs help the personnel at relevant organizations to make appropriate decisions based on the conclusive analysis of processed and stored data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">V2X communication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VANET</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accident detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">safety alert</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">edge computing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Omer Chughtai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abdullah Shahwani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amir Qayyum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jürgen Pannek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2019), 8, p 896</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8, p 896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics8080896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a2912f6bf1674c8891909844a8ada8c6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/8/8/896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2019</subfield><subfield code="e">8, p 896</subfield></datafield></record></collection>
|
score |
7.399419 |