Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor
Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effe...
Ausführliche Beschreibung
Autor*in: |
Gaoyang Lei [verfasserIn] Guiyun Xu [verfasserIn] Xiaoguang Zhang [verfasserIn] Yayun Zhang [verfasserIn] Zhenyue Song [verfasserIn] Wentao Xu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 19(2019), 2, p 388 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2019 ; number:2, p 388 |
Links: |
---|
DOI / URN: |
10.3390/s19020388 |
---|
Katalog-ID: |
DOAJ032729812 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ032729812 | ||
003 | DE-627 | ||
005 | 20230502160037.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s19020388 |2 doi | |
035 | |a (DE-627)DOAJ032729812 | ||
035 | |a (DE-599)DOAJ892339316dd6462395466656619adba9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Gaoyang Lei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results. | ||
650 | 4 | |a mine hoist | |
650 | 4 | |a wire rope tension | |
650 | 4 | |a particle damping sensor | |
650 | 4 | |a damping vibration and energy dissipation | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Guiyun Xu |e verfasserin |4 aut | |
700 | 0 | |a Xiaoguang Zhang |e verfasserin |4 aut | |
700 | 0 | |a Yayun Zhang |e verfasserin |4 aut | |
700 | 0 | |a Zhenyue Song |e verfasserin |4 aut | |
700 | 0 | |a Wentao Xu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 19(2019), 2, p 388 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2019 |g number:2, p 388 |
856 | 4 | 0 | |u https://doi.org/10.3390/s19020388 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/892339316dd6462395466656619adba9 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/1424-8220/19/2/388 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2019 |e 2, p 388 |
author_variant |
g l gl g x gx x z xz y z yz z s zs w x wx |
---|---|
matchkey_str |
article:14248220:2019----::tdodnmcoioigfieoeesobsdnhpr |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TP |
publishDate |
2019 |
allfields |
10.3390/s19020388 doi (DE-627)DOAJ032729812 (DE-599)DOAJ892339316dd6462395466656619adba9 DE-627 ger DE-627 rakwb eng TP1-1185 Gaoyang Lei verfasserin aut Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results. mine hoist wire rope tension particle damping sensor damping vibration and energy dissipation Chemical technology Guiyun Xu verfasserin aut Xiaoguang Zhang verfasserin aut Yayun Zhang verfasserin aut Zhenyue Song verfasserin aut Wentao Xu verfasserin aut In Sensors MDPI AG, 2003 19(2019), 2, p 388 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:2, p 388 https://doi.org/10.3390/s19020388 kostenfrei https://doaj.org/article/892339316dd6462395466656619adba9 kostenfrei http://www.mdpi.com/1424-8220/19/2/388 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 2, p 388 |
spelling |
10.3390/s19020388 doi (DE-627)DOAJ032729812 (DE-599)DOAJ892339316dd6462395466656619adba9 DE-627 ger DE-627 rakwb eng TP1-1185 Gaoyang Lei verfasserin aut Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results. mine hoist wire rope tension particle damping sensor damping vibration and energy dissipation Chemical technology Guiyun Xu verfasserin aut Xiaoguang Zhang verfasserin aut Yayun Zhang verfasserin aut Zhenyue Song verfasserin aut Wentao Xu verfasserin aut In Sensors MDPI AG, 2003 19(2019), 2, p 388 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:2, p 388 https://doi.org/10.3390/s19020388 kostenfrei https://doaj.org/article/892339316dd6462395466656619adba9 kostenfrei http://www.mdpi.com/1424-8220/19/2/388 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 2, p 388 |
allfields_unstemmed |
10.3390/s19020388 doi (DE-627)DOAJ032729812 (DE-599)DOAJ892339316dd6462395466656619adba9 DE-627 ger DE-627 rakwb eng TP1-1185 Gaoyang Lei verfasserin aut Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results. mine hoist wire rope tension particle damping sensor damping vibration and energy dissipation Chemical technology Guiyun Xu verfasserin aut Xiaoguang Zhang verfasserin aut Yayun Zhang verfasserin aut Zhenyue Song verfasserin aut Wentao Xu verfasserin aut In Sensors MDPI AG, 2003 19(2019), 2, p 388 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:2, p 388 https://doi.org/10.3390/s19020388 kostenfrei https://doaj.org/article/892339316dd6462395466656619adba9 kostenfrei http://www.mdpi.com/1424-8220/19/2/388 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 2, p 388 |
allfieldsGer |
10.3390/s19020388 doi (DE-627)DOAJ032729812 (DE-599)DOAJ892339316dd6462395466656619adba9 DE-627 ger DE-627 rakwb eng TP1-1185 Gaoyang Lei verfasserin aut Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results. mine hoist wire rope tension particle damping sensor damping vibration and energy dissipation Chemical technology Guiyun Xu verfasserin aut Xiaoguang Zhang verfasserin aut Yayun Zhang verfasserin aut Zhenyue Song verfasserin aut Wentao Xu verfasserin aut In Sensors MDPI AG, 2003 19(2019), 2, p 388 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:2, p 388 https://doi.org/10.3390/s19020388 kostenfrei https://doaj.org/article/892339316dd6462395466656619adba9 kostenfrei http://www.mdpi.com/1424-8220/19/2/388 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 2, p 388 |
allfieldsSound |
10.3390/s19020388 doi (DE-627)DOAJ032729812 (DE-599)DOAJ892339316dd6462395466656619adba9 DE-627 ger DE-627 rakwb eng TP1-1185 Gaoyang Lei verfasserin aut Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results. mine hoist wire rope tension particle damping sensor damping vibration and energy dissipation Chemical technology Guiyun Xu verfasserin aut Xiaoguang Zhang verfasserin aut Yayun Zhang verfasserin aut Zhenyue Song verfasserin aut Wentao Xu verfasserin aut In Sensors MDPI AG, 2003 19(2019), 2, p 388 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:2, p 388 https://doi.org/10.3390/s19020388 kostenfrei https://doaj.org/article/892339316dd6462395466656619adba9 kostenfrei http://www.mdpi.com/1424-8220/19/2/388 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 2, p 388 |
language |
English |
source |
In Sensors 19(2019), 2, p 388 volume:19 year:2019 number:2, p 388 |
sourceStr |
In Sensors 19(2019), 2, p 388 volume:19 year:2019 number:2, p 388 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
mine hoist wire rope tension particle damping sensor damping vibration and energy dissipation Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Gaoyang Lei @@aut@@ Guiyun Xu @@aut@@ Xiaoguang Zhang @@aut@@ Yayun Zhang @@aut@@ Zhenyue Song @@aut@@ Wentao Xu @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ032729812 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032729812</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502160037.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s19020388</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032729812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ892339316dd6462395466656619adba9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gaoyang Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mine hoist</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wire rope tension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle damping sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">damping vibration and energy dissipation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guiyun Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoguang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yayun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyue Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wentao Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2019), 2, p 388</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2, p 388</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s19020388</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/892339316dd6462395466656619adba9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1424-8220/19/2/388</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">2, p 388</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Gaoyang Lei |
spellingShingle |
Gaoyang Lei misc TP1-1185 misc mine hoist misc wire rope tension misc particle damping sensor misc damping vibration and energy dissipation misc Chemical technology Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor |
authorStr |
Gaoyang Lei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor mine hoist wire rope tension particle damping sensor damping vibration and energy dissipation |
topic |
misc TP1-1185 misc mine hoist misc wire rope tension misc particle damping sensor misc damping vibration and energy dissipation misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc mine hoist misc wire rope tension misc particle damping sensor misc damping vibration and energy dissipation misc Chemical technology |
topic_browse |
misc TP1-1185 misc mine hoist misc wire rope tension misc particle damping sensor misc damping vibration and energy dissipation misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor |
ctrlnum |
(DE-627)DOAJ032729812 (DE-599)DOAJ892339316dd6462395466656619adba9 |
title_full |
Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor |
author_sort |
Gaoyang Lei |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Gaoyang Lei Guiyun Xu Xiaoguang Zhang Yayun Zhang Zhenyue Song Wentao Xu |
container_volume |
19 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Gaoyang Lei |
doi_str_mv |
10.3390/s19020388 |
author2-role |
verfasserin |
title_sort |
study on dynamic monitoring of wire rope tension based on the particle damping sensor |
callnumber |
TP1-1185 |
title_auth |
Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor |
abstract |
Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results. |
abstractGer |
Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results. |
abstract_unstemmed |
Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 388 |
title_short |
Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor |
url |
https://doi.org/10.3390/s19020388 https://doaj.org/article/892339316dd6462395466656619adba9 http://www.mdpi.com/1424-8220/19/2/388 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Guiyun Xu Xiaoguang Zhang Yayun Zhang Zhenyue Song Wentao Xu |
author2Str |
Guiyun Xu Xiaoguang Zhang Yayun Zhang Zhenyue Song Wentao Xu |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s19020388 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T13:46:13.455Z |
_version_ |
1803565791660998656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032729812</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502160037.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s19020388</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032729812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ892339316dd6462395466656619adba9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gaoyang Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on Dynamic Monitoring of Wire Rope Tension Based on the Particle Damping Sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Real-time monitoring of wire rope tension is of great significance to the safe operation of mine hoist. Due to the longitudinal and lateral coupling vibration of wire ropes during the operation of hoist, there are high frequency components in measured tension signals of wire ropes, which cannot effectively characterize the actual lifting load. To overcome this problem, a particle damping sensor with a vibration dissipation function is designed in this paper. Multilayered steel balls are placed into the cylindrical cavity of the sensor. Damping vibration and energy dissipation will occur when the sensor is subjected to external excitation. Then, to obtain the optimal sensor characteristics, relevant parameters of the particles and the spoke structure are simulated. Finally, the sensor based on the optimized parameters is manufactured and tested in a coal mine. Compared with the general pressure sensor, the particle damping sensor can effectively eliminate the influence of wire ropes vibration on tension measurement and achieve accurate measurement results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mine hoist</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wire rope tension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle damping sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">damping vibration and energy dissipation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guiyun Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoguang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yayun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyue Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wentao Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2019), 2, p 388</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2, p 388</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s19020388</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/892339316dd6462395466656619adba9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1424-8220/19/2/388</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">2, p 388</subfield></datafield></record></collection>
|
score |
7.4009247 |