Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies
Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward curre...
Ausführliche Beschreibung
Autor*in: |
Jérôme Clatot [verfasserIn] Nathalie Neyroud [verfasserIn] Robert Cox [verfasserIn] Charlotte Souil [verfasserIn] Jing Huang [verfasserIn] Pascale Guicheney [verfasserIn] Charles Antzelevitch [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Molecular Sciences - MDPI AG, 2003, 21(2020), 14, p 5057 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2020 ; number:14, p 5057 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijms21145057 |
---|
Katalog-ID: |
DOAJ032875762 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ032875762 | ||
003 | DE-627 | ||
005 | 20240412223554.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijms21145057 |2 doi | |
035 | |a (DE-627)DOAJ032875762 | ||
035 | |a (DE-599)DOAJe0a1fbddbad74b9199aa0c3f1f71bd14 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Jérôme Clatot |e verfasserin |4 aut | |
245 | 1 | 0 | |a Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes. | ||
650 | 4 | |a arrhythmia | |
650 | 4 | |a Brugada syndrome | |
650 | 4 | |a spinocerebellar ataxia | |
650 | 4 | |a Na<sub<v</sub<1.5 | |
650 | 4 | |a <i<SCN5A</i< | |
650 | 4 | |a Kv4.3 | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Nathalie Neyroud |e verfasserin |4 aut | |
700 | 0 | |a Robert Cox |e verfasserin |4 aut | |
700 | 0 | |a Charlotte Souil |e verfasserin |4 aut | |
700 | 0 | |a Jing Huang |e verfasserin |4 aut | |
700 | 0 | |a Pascale Guicheney |e verfasserin |4 aut | |
700 | 0 | |a Charles Antzelevitch |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Molecular Sciences |d MDPI AG, 2003 |g 21(2020), 14, p 5057 |w (DE-627)316340715 |w (DE-600)2019364-6 |x 14220067 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2020 |g number:14, p 5057 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijms21145057 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e0a1fbddbad74b9199aa0c3f1f71bd14 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1422-0067/21/14/5057 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-6596 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1422-0067 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2020 |e 14, p 5057 |
author_variant |
j c jc n n nn r c rc c s cs j h jh p g pg c a ca |
---|---|
matchkey_str |
article:14220067:2020----::nergltookuvu4adotggtdoimhnesnelepeipstotcr |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QH |
publishDate |
2020 |
allfields |
10.3390/ijms21145057 doi (DE-627)DOAJ032875762 (DE-599)DOAJe0a1fbddbad74b9199aa0c3f1f71bd14 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jérôme Clatot verfasserin aut Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes. arrhythmia Brugada syndrome spinocerebellar ataxia Na<sub<v</sub<1.5 <i<SCN5A</i< Kv4.3 Biology (General) Chemistry Nathalie Neyroud verfasserin aut Robert Cox verfasserin aut Charlotte Souil verfasserin aut Jing Huang verfasserin aut Pascale Guicheney verfasserin aut Charles Antzelevitch verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 21(2020), 14, p 5057 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:21 year:2020 number:14, p 5057 https://doi.org/10.3390/ijms21145057 kostenfrei https://doaj.org/article/e0a1fbddbad74b9199aa0c3f1f71bd14 kostenfrei https://www.mdpi.com/1422-0067/21/14/5057 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 14, p 5057 |
spelling |
10.3390/ijms21145057 doi (DE-627)DOAJ032875762 (DE-599)DOAJe0a1fbddbad74b9199aa0c3f1f71bd14 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jérôme Clatot verfasserin aut Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes. arrhythmia Brugada syndrome spinocerebellar ataxia Na<sub<v</sub<1.5 <i<SCN5A</i< Kv4.3 Biology (General) Chemistry Nathalie Neyroud verfasserin aut Robert Cox verfasserin aut Charlotte Souil verfasserin aut Jing Huang verfasserin aut Pascale Guicheney verfasserin aut Charles Antzelevitch verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 21(2020), 14, p 5057 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:21 year:2020 number:14, p 5057 https://doi.org/10.3390/ijms21145057 kostenfrei https://doaj.org/article/e0a1fbddbad74b9199aa0c3f1f71bd14 kostenfrei https://www.mdpi.com/1422-0067/21/14/5057 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 14, p 5057 |
allfields_unstemmed |
10.3390/ijms21145057 doi (DE-627)DOAJ032875762 (DE-599)DOAJe0a1fbddbad74b9199aa0c3f1f71bd14 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jérôme Clatot verfasserin aut Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes. arrhythmia Brugada syndrome spinocerebellar ataxia Na<sub<v</sub<1.5 <i<SCN5A</i< Kv4.3 Biology (General) Chemistry Nathalie Neyroud verfasserin aut Robert Cox verfasserin aut Charlotte Souil verfasserin aut Jing Huang verfasserin aut Pascale Guicheney verfasserin aut Charles Antzelevitch verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 21(2020), 14, p 5057 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:21 year:2020 number:14, p 5057 https://doi.org/10.3390/ijms21145057 kostenfrei https://doaj.org/article/e0a1fbddbad74b9199aa0c3f1f71bd14 kostenfrei https://www.mdpi.com/1422-0067/21/14/5057 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 14, p 5057 |
allfieldsGer |
10.3390/ijms21145057 doi (DE-627)DOAJ032875762 (DE-599)DOAJe0a1fbddbad74b9199aa0c3f1f71bd14 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jérôme Clatot verfasserin aut Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes. arrhythmia Brugada syndrome spinocerebellar ataxia Na<sub<v</sub<1.5 <i<SCN5A</i< Kv4.3 Biology (General) Chemistry Nathalie Neyroud verfasserin aut Robert Cox verfasserin aut Charlotte Souil verfasserin aut Jing Huang verfasserin aut Pascale Guicheney verfasserin aut Charles Antzelevitch verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 21(2020), 14, p 5057 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:21 year:2020 number:14, p 5057 https://doi.org/10.3390/ijms21145057 kostenfrei https://doaj.org/article/e0a1fbddbad74b9199aa0c3f1f71bd14 kostenfrei https://www.mdpi.com/1422-0067/21/14/5057 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 14, p 5057 |
allfieldsSound |
10.3390/ijms21145057 doi (DE-627)DOAJ032875762 (DE-599)DOAJe0a1fbddbad74b9199aa0c3f1f71bd14 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Jérôme Clatot verfasserin aut Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes. arrhythmia Brugada syndrome spinocerebellar ataxia Na<sub<v</sub<1.5 <i<SCN5A</i< Kv4.3 Biology (General) Chemistry Nathalie Neyroud verfasserin aut Robert Cox verfasserin aut Charlotte Souil verfasserin aut Jing Huang verfasserin aut Pascale Guicheney verfasserin aut Charles Antzelevitch verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 21(2020), 14, p 5057 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:21 year:2020 number:14, p 5057 https://doi.org/10.3390/ijms21145057 kostenfrei https://doaj.org/article/e0a1fbddbad74b9199aa0c3f1f71bd14 kostenfrei https://www.mdpi.com/1422-0067/21/14/5057 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 14, p 5057 |
language |
English |
source |
In International Journal of Molecular Sciences 21(2020), 14, p 5057 volume:21 year:2020 number:14, p 5057 |
sourceStr |
In International Journal of Molecular Sciences 21(2020), 14, p 5057 volume:21 year:2020 number:14, p 5057 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
arrhythmia Brugada syndrome spinocerebellar ataxia Na<sub<v</sub<1.5 <i<SCN5A</i< Kv4.3 Biology (General) Chemistry |
isfreeaccess_bool |
true |
container_title |
International Journal of Molecular Sciences |
authorswithroles_txt_mv |
Jérôme Clatot @@aut@@ Nathalie Neyroud @@aut@@ Robert Cox @@aut@@ Charlotte Souil @@aut@@ Jing Huang @@aut@@ Pascale Guicheney @@aut@@ Charles Antzelevitch @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
316340715 |
id |
DOAJ032875762 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032875762</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412223554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms21145057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032875762</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0a1fbddbad74b9199aa0c3f1f71bd14</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jérôme Clatot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">arrhythmia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brugada syndrome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spinocerebellar ataxia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Na<sub<v</sub<1.5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<SCN5A</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kv4.3</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nathalie Neyroud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert Cox</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charlotte Souil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pascale Guicheney</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Antzelevitch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">21(2020), 14, p 5057</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:14, p 5057</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms21145057</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0a1fbddbad74b9199aa0c3f1f71bd14</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/21/14/5057</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">14, p 5057</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jérôme Clatot |
spellingShingle |
Jérôme Clatot misc QH301-705.5 misc QD1-999 misc arrhythmia misc Brugada syndrome misc spinocerebellar ataxia misc Na<sub<v</sub<1.5 misc <i<SCN5A</i< misc Kv4.3 misc Biology (General) misc Chemistry Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies |
authorStr |
Jérôme Clatot |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340715 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
14220067 |
topic_title |
QH301-705.5 QD1-999 Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies arrhythmia Brugada syndrome spinocerebellar ataxia Na<sub<v</sub<1.5 <i<SCN5A</i< Kv4.3 |
topic |
misc QH301-705.5 misc QD1-999 misc arrhythmia misc Brugada syndrome misc spinocerebellar ataxia misc Na<sub<v</sub<1.5 misc <i<SCN5A</i< misc Kv4.3 misc Biology (General) misc Chemistry |
topic_unstemmed |
misc QH301-705.5 misc QD1-999 misc arrhythmia misc Brugada syndrome misc spinocerebellar ataxia misc Na<sub<v</sub<1.5 misc <i<SCN5A</i< misc Kv4.3 misc Biology (General) misc Chemistry |
topic_browse |
misc QH301-705.5 misc QD1-999 misc arrhythmia misc Brugada syndrome misc spinocerebellar ataxia misc Na<sub<v</sub<1.5 misc <i<SCN5A</i< misc Kv4.3 misc Biology (General) misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Molecular Sciences |
hierarchy_parent_id |
316340715 |
hierarchy_top_title |
International Journal of Molecular Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340715 (DE-600)2019364-6 |
title |
Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies |
ctrlnum |
(DE-627)DOAJ032875762 (DE-599)DOAJe0a1fbddbad74b9199aa0c3f1f71bd14 |
title_full |
Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies |
author_sort |
Jérôme Clatot |
journal |
International Journal of Molecular Sciences |
journalStr |
International Journal of Molecular Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Jérôme Clatot Nathalie Neyroud Robert Cox Charlotte Souil Jing Huang Pascale Guicheney Charles Antzelevitch |
container_volume |
21 |
class |
QH301-705.5 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Jérôme Clatot |
doi_str_mv |
10.3390/ijms21145057 |
author2-role |
verfasserin |
title_sort |
inter-regulation of k<sub<v</sub<4.3 and voltage-gated sodium channels underlies predisposition to cardiac and neuronal channelopathies |
callnumber |
QH301-705.5 |
title_auth |
Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies |
abstract |
Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes. |
abstractGer |
Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes. |
abstract_unstemmed |
Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14, p 5057 |
title_short |
Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies |
url |
https://doi.org/10.3390/ijms21145057 https://doaj.org/article/e0a1fbddbad74b9199aa0c3f1f71bd14 https://www.mdpi.com/1422-0067/21/14/5057 https://doaj.org/toc/1661-6596 https://doaj.org/toc/1422-0067 |
remote_bool |
true |
author2 |
Nathalie Neyroud Robert Cox Charlotte Souil Jing Huang Pascale Guicheney Charles Antzelevitch |
author2Str |
Nathalie Neyroud Robert Cox Charlotte Souil Jing Huang Pascale Guicheney Charles Antzelevitch |
ppnlink |
316340715 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijms21145057 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T14:35:14.785Z |
_version_ |
1803568875866947584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ032875762</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412223554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms21145057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ032875762</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe0a1fbddbad74b9199aa0c3f1f71bd14</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jérôme Clatot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inter-Regulation of K<sub<v</sub<4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Genetic variants in voltage-gated sodium channels (Na<sub<v</sub<) encoded by <i<SCNXA</i< genes, responsible for I<sub<Na</sub<, and K<sub<v</sub<4.3 channels encoded by <i<KCND3</i<, responsible for the transient outward current (I<sub<to</sub<), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that K<sub<v</sub<4.3 and Na<sub<v</sub< variants regulate each other’s function, thus modulating I<sub<Na</sub</I<sub<to</sub< balance in cardiomyocytes and I<sub<Na</sub</I<sub<(A)</sub< balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Na<sub<v</sub<1.5 and K<sub<v</sub<4.3 channels in HEK293 cells. I<sub<Na</sub< and I<sub<to</sub< were recorded. Results: <i<SCN5A</i< variants associated with BrS reduced I<sub<Na</sub<, but increased I<sub<to</sub<. Moreover, BrS and SCA19/22 <i<KCND3</i< variants associated with a gain of function of I<sub<to</sub<, significantly reduced I<sub<Na</sub<, whereas the SCA19/22 <i<KCND3</i< variants associated with a loss of function (LOF) of I<sub<to</sub< significantly increased I<sub<Na</sub<. Auxiliary subunits Na<sub<v</sub<β1, MiRP3 and KChIP2 also modulated I<sub<Na</sub</I<sub<to</sub< balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF <i<SCN5A</i< variants can increase K<sub<v</sub<4.3 cell-surface expression. Conclusion: Na<sub<v</sub< and K<sub<v</sub<4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">arrhythmia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brugada syndrome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spinocerebellar ataxia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Na<sub<v</sub<1.5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<SCN5A</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kv4.3</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nathalie Neyroud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert Cox</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charlotte Souil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pascale Guicheney</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Antzelevitch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">21(2020), 14, p 5057</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:14, p 5057</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms21145057</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e0a1fbddbad74b9199aa0c3f1f71bd14</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/21/14/5057</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">14, p 5057</subfield></datafield></record></collection>
|
score |
7.402916 |