On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys
In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were pr...
Ausführliche Beschreibung
Autor*in: |
Susanne Obert [verfasserIn] Alexander Kauffmann [verfasserIn] Sascha Seils [verfasserIn] Steven Schellert [verfasserIn] Matthias Weber [verfasserIn] Bronislava Gorr [verfasserIn] Hans-Jürgen Christ [verfasserIn] Martin Heilmaier [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Materials Research and Technology - Elsevier, 2015, 9(2020), 4, Seite 8556-8567 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2020 ; number:4 ; pages:8556-8567 |
Links: |
---|
DOI / URN: |
10.1016/j.jmrt.2020.06.002 |
---|
Katalog-ID: |
DOAJ03300255X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ03300255X | ||
003 | DE-627 | ||
005 | 20230503022347.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmrt.2020.06.002 |2 doi | |
035 | |a (DE-627)DOAJ03300255X | ||
035 | |a (DE-599)DOAJ4a436b1fb75340de8a0903bd20dd709e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Susanne Obert |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content. | ||
650 | 4 | |a High temperature materials | |
650 | 4 | |a Scanning electron microscopy | |
650 | 4 | |a Refractory alloys | |
650 | 4 | |a Transmission electron microscopy | |
650 | 4 | |a High temperature corrosion | |
650 | 4 | |a Oxidation resistance | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Alexander Kauffmann |e verfasserin |4 aut | |
700 | 0 | |a Sascha Seils |e verfasserin |4 aut | |
700 | 0 | |a Steven Schellert |e verfasserin |4 aut | |
700 | 0 | |a Matthias Weber |e verfasserin |4 aut | |
700 | 0 | |a Bronislava Gorr |e verfasserin |4 aut | |
700 | 0 | |a Hans-Jürgen Christ |e verfasserin |4 aut | |
700 | 0 | |a Martin Heilmaier |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Materials Research and Technology |d Elsevier, 2015 |g 9(2020), 4, Seite 8556-8567 |w (DE-627)768093163 |w (DE-600)2732709-7 |x 22140697 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2020 |g number:4 |g pages:8556-8567 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmrt.2020.06.002 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4a436b1fb75340de8a0903bd20dd709e |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2238785420314034 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2238-7854 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2020 |e 4 |h 8556-8567 |
author_variant |
s o so a k ak s s ss s s ss m w mw b g bg h j c hjc m h mh |
---|---|
matchkey_str |
article:22140697:2020----::nhceiaadirsrcuarqieetfrhpsigei |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TN |
publishDate |
2020 |
allfields |
10.1016/j.jmrt.2020.06.002 doi (DE-627)DOAJ03300255X (DE-599)DOAJ4a436b1fb75340de8a0903bd20dd709e DE-627 ger DE-627 rakwb eng TN1-997 Susanne Obert verfasserin aut On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content. High temperature materials Scanning electron microscopy Refractory alloys Transmission electron microscopy High temperature corrosion Oxidation resistance Mining engineering. Metallurgy Alexander Kauffmann verfasserin aut Sascha Seils verfasserin aut Steven Schellert verfasserin aut Matthias Weber verfasserin aut Bronislava Gorr verfasserin aut Hans-Jürgen Christ verfasserin aut Martin Heilmaier verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 4, Seite 8556-8567 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:4 pages:8556-8567 https://doi.org/10.1016/j.jmrt.2020.06.002 kostenfrei https://doaj.org/article/4a436b1fb75340de8a0903bd20dd709e kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314034 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 4 8556-8567 |
spelling |
10.1016/j.jmrt.2020.06.002 doi (DE-627)DOAJ03300255X (DE-599)DOAJ4a436b1fb75340de8a0903bd20dd709e DE-627 ger DE-627 rakwb eng TN1-997 Susanne Obert verfasserin aut On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content. High temperature materials Scanning electron microscopy Refractory alloys Transmission electron microscopy High temperature corrosion Oxidation resistance Mining engineering. Metallurgy Alexander Kauffmann verfasserin aut Sascha Seils verfasserin aut Steven Schellert verfasserin aut Matthias Weber verfasserin aut Bronislava Gorr verfasserin aut Hans-Jürgen Christ verfasserin aut Martin Heilmaier verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 4, Seite 8556-8567 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:4 pages:8556-8567 https://doi.org/10.1016/j.jmrt.2020.06.002 kostenfrei https://doaj.org/article/4a436b1fb75340de8a0903bd20dd709e kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314034 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 4 8556-8567 |
allfields_unstemmed |
10.1016/j.jmrt.2020.06.002 doi (DE-627)DOAJ03300255X (DE-599)DOAJ4a436b1fb75340de8a0903bd20dd709e DE-627 ger DE-627 rakwb eng TN1-997 Susanne Obert verfasserin aut On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content. High temperature materials Scanning electron microscopy Refractory alloys Transmission electron microscopy High temperature corrosion Oxidation resistance Mining engineering. Metallurgy Alexander Kauffmann verfasserin aut Sascha Seils verfasserin aut Steven Schellert verfasserin aut Matthias Weber verfasserin aut Bronislava Gorr verfasserin aut Hans-Jürgen Christ verfasserin aut Martin Heilmaier verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 4, Seite 8556-8567 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:4 pages:8556-8567 https://doi.org/10.1016/j.jmrt.2020.06.002 kostenfrei https://doaj.org/article/4a436b1fb75340de8a0903bd20dd709e kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314034 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 4 8556-8567 |
allfieldsGer |
10.1016/j.jmrt.2020.06.002 doi (DE-627)DOAJ03300255X (DE-599)DOAJ4a436b1fb75340de8a0903bd20dd709e DE-627 ger DE-627 rakwb eng TN1-997 Susanne Obert verfasserin aut On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content. High temperature materials Scanning electron microscopy Refractory alloys Transmission electron microscopy High temperature corrosion Oxidation resistance Mining engineering. Metallurgy Alexander Kauffmann verfasserin aut Sascha Seils verfasserin aut Steven Schellert verfasserin aut Matthias Weber verfasserin aut Bronislava Gorr verfasserin aut Hans-Jürgen Christ verfasserin aut Martin Heilmaier verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 4, Seite 8556-8567 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:4 pages:8556-8567 https://doi.org/10.1016/j.jmrt.2020.06.002 kostenfrei https://doaj.org/article/4a436b1fb75340de8a0903bd20dd709e kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314034 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 4 8556-8567 |
allfieldsSound |
10.1016/j.jmrt.2020.06.002 doi (DE-627)DOAJ03300255X (DE-599)DOAJ4a436b1fb75340de8a0903bd20dd709e DE-627 ger DE-627 rakwb eng TN1-997 Susanne Obert verfasserin aut On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content. High temperature materials Scanning electron microscopy Refractory alloys Transmission electron microscopy High temperature corrosion Oxidation resistance Mining engineering. Metallurgy Alexander Kauffmann verfasserin aut Sascha Seils verfasserin aut Steven Schellert verfasserin aut Matthias Weber verfasserin aut Bronislava Gorr verfasserin aut Hans-Jürgen Christ verfasserin aut Martin Heilmaier verfasserin aut In Journal of Materials Research and Technology Elsevier, 2015 9(2020), 4, Seite 8556-8567 (DE-627)768093163 (DE-600)2732709-7 22140697 nnns volume:9 year:2020 number:4 pages:8556-8567 https://doi.org/10.1016/j.jmrt.2020.06.002 kostenfrei https://doaj.org/article/4a436b1fb75340de8a0903bd20dd709e kostenfrei http://www.sciencedirect.com/science/article/pii/S2238785420314034 kostenfrei https://doaj.org/toc/2238-7854 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 9 2020 4 8556-8567 |
language |
English |
source |
In Journal of Materials Research and Technology 9(2020), 4, Seite 8556-8567 volume:9 year:2020 number:4 pages:8556-8567 |
sourceStr |
In Journal of Materials Research and Technology 9(2020), 4, Seite 8556-8567 volume:9 year:2020 number:4 pages:8556-8567 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High temperature materials Scanning electron microscopy Refractory alloys Transmission electron microscopy High temperature corrosion Oxidation resistance Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Journal of Materials Research and Technology |
authorswithroles_txt_mv |
Susanne Obert @@aut@@ Alexander Kauffmann @@aut@@ Sascha Seils @@aut@@ Steven Schellert @@aut@@ Matthias Weber @@aut@@ Bronislava Gorr @@aut@@ Hans-Jürgen Christ @@aut@@ Martin Heilmaier @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
768093163 |
id |
DOAJ03300255X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03300255X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503022347.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2020.06.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03300255X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a436b1fb75340de8a0903bd20dd709e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Susanne Obert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scanning electron microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refractory alloys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission electron microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidation resistance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Kauffmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sascha Seils</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steven Schellert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthias Weber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bronislava Gorr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hans-Jürgen Christ</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin Heilmaier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">9(2020), 4, Seite 8556-8567</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:8556-8567</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2020.06.002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a436b1fb75340de8a0903bd20dd709e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2238785420314034</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="h">8556-8567</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Susanne Obert |
spellingShingle |
Susanne Obert misc TN1-997 misc High temperature materials misc Scanning electron microscopy misc Refractory alloys misc Transmission electron microscopy misc High temperature corrosion misc Oxidation resistance misc Mining engineering. Metallurgy On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys |
authorStr |
Susanne Obert |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768093163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
22140697 |
topic_title |
TN1-997 On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys High temperature materials Scanning electron microscopy Refractory alloys Transmission electron microscopy High temperature corrosion Oxidation resistance |
topic |
misc TN1-997 misc High temperature materials misc Scanning electron microscopy misc Refractory alloys misc Transmission electron microscopy misc High temperature corrosion misc Oxidation resistance misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc High temperature materials misc Scanning electron microscopy misc Refractory alloys misc Transmission electron microscopy misc High temperature corrosion misc Oxidation resistance misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc High temperature materials misc Scanning electron microscopy misc Refractory alloys misc Transmission electron microscopy misc High temperature corrosion misc Oxidation resistance misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Materials Research and Technology |
hierarchy_parent_id |
768093163 |
hierarchy_top_title |
Journal of Materials Research and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768093163 (DE-600)2732709-7 |
title |
On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys |
ctrlnum |
(DE-627)DOAJ03300255X (DE-599)DOAJ4a436b1fb75340de8a0903bd20dd709e |
title_full |
On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys |
author_sort |
Susanne Obert |
journal |
Journal of Materials Research and Technology |
journalStr |
Journal of Materials Research and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
8556 |
author_browse |
Susanne Obert Alexander Kauffmann Sascha Seils Steven Schellert Matthias Weber Bronislava Gorr Hans-Jürgen Christ Martin Heilmaier |
container_volume |
9 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Susanne Obert |
doi_str_mv |
10.1016/j.jmrt.2020.06.002 |
author2-role |
verfasserin |
title_sort |
on the chemical and microstructural requirements for the pesting-resistance of mo–si–ti alloys |
callnumber |
TN1-997 |
title_auth |
On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys |
abstract |
In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content. |
abstractGer |
In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content. |
abstract_unstemmed |
In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys |
url |
https://doi.org/10.1016/j.jmrt.2020.06.002 https://doaj.org/article/4a436b1fb75340de8a0903bd20dd709e http://www.sciencedirect.com/science/article/pii/S2238785420314034 https://doaj.org/toc/2238-7854 |
remote_bool |
true |
author2 |
Alexander Kauffmann Sascha Seils Steven Schellert Matthias Weber Bronislava Gorr Hans-Jürgen Christ Martin Heilmaier |
author2Str |
Alexander Kauffmann Sascha Seils Steven Schellert Matthias Weber Bronislava Gorr Hans-Jürgen Christ Martin Heilmaier |
ppnlink |
768093163 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jmrt.2020.06.002 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T15:17:13.590Z |
_version_ |
1803571517027516417 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03300255X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503022347.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmrt.2020.06.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03300255X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a436b1fb75340de8a0903bd20dd709e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Susanne Obert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the chemical and microstructural requirements for the pesting-resistance of Mo–Si–Ti alloys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent publications [Schliephake et al. in Intermetallics 104 (2019) 133–142 and Obert, Kauffmann & Heilmaier in Acta Materialia, 184 (2020) 132–142], an unexpected pesting-stability of fully eutectic and specific eutectic–eutectoid Mo–Si–Ti alloys was found. Several potential reasons were proposed: microstructural length scale being typically very fine due to the eutectic and eutectoid reactions, the phase distribution including the fraction of the eutectic and eutectoid regions, as well as the chemical composition of the individual phases. In the present study, we prove the Ti content to be decisive for the pesting-resistance in air at 800 °C by investigating the microstructure and oxidation behaviour of Mo–Si–Ti alloys with systematically varying nominal Ti content. A critical Ti content of 43 at% was identified. Due to the phase equilibrium, this corresponds to a local Ti content in Mo solid solution of 35 at%. Other microstructural properties such as (i) lamellar size within eutectic and eutectoid regions and (ii) volume fraction of the eutectic and eutectoid regions were demonstrated to have an insignificant influence on the pesting-resistance of the alloys. Rather, the assessment of the oxidation behaviour of the monolithic phase MoSS, which was identified to be crucial for the oxidation behaviour of the Mo–Si–Ti alloys, confirmed an improvement in oxidation behaviour with increasing Ti content.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scanning electron microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refractory alloys</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission electron microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidation resistance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Kauffmann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sascha Seils</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steven Schellert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthias Weber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bronislava Gorr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hans-Jürgen Christ</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin Heilmaier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Materials Research and Technology</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">9(2020), 4, Seite 8556-8567</subfield><subfield code="w">(DE-627)768093163</subfield><subfield code="w">(DE-600)2732709-7</subfield><subfield code="x">22140697</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:8556-8567</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmrt.2020.06.002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a436b1fb75340de8a0903bd20dd709e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2238785420314034</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2238-7854</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="h">8556-8567</subfield></datafield></record></collection>
|
score |
7.400672 |