Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool
The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the mar...
Ausführliche Beschreibung
Autor*in: |
Johannes Ramme [verfasserIn] Robert Wegert [verfasserIn] Vinzenz Guski [verfasserIn] Siegfried Schmauder [verfasserIn] Hans-Christian Moehring [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 12(2022), 14, p 7095 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:14, p 7095 |
Links: |
---|
DOI / URN: |
10.3390/app12147095 |
---|
Katalog-ID: |
DOAJ033029288 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ033029288 | ||
003 | DE-627 | ||
005 | 20240414113648.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app12147095 |2 doi | |
035 | |a (DE-627)DOAJ033029288 | ||
035 | |a (DE-599)DOAJe46abc301703497e957ca11c63ba3812 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Johannes Ramme |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG). | ||
650 | 4 | |a single-lip deep hole drilling | |
650 | 4 | |a process temperature | |
650 | 4 | |a in-process measurement | |
650 | 4 | |a monitoring | |
650 | 4 | |a simulation methods | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Robert Wegert |e verfasserin |4 aut | |
700 | 0 | |a Vinzenz Guski |e verfasserin |4 aut | |
700 | 0 | |a Siegfried Schmauder |e verfasserin |4 aut | |
700 | 0 | |a Hans-Christian Moehring |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 12(2022), 14, p 7095 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:14, p 7095 |
856 | 4 | 0 | |u https://doi.org/10.3390/app12147095 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e46abc301703497e957ca11c63ba3812 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/12/14/7095 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 14, p 7095 |
author_variant |
j r jr r w rw v g vg s s ss h c m hcm |
---|---|
matchkey_str |
article:20763417:2022----::eeomnoautsnocnetoratmtmeaueesrmnateutnisro |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.3390/app12147095 doi (DE-627)DOAJ033029288 (DE-599)DOAJe46abc301703497e957ca11c63ba3812 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Johannes Ramme verfasserin aut Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG). single-lip deep hole drilling process temperature in-process measurement monitoring simulation methods Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Robert Wegert verfasserin aut Vinzenz Guski verfasserin aut Siegfried Schmauder verfasserin aut Hans-Christian Moehring verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 14, p 7095 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:14, p 7095 https://doi.org/10.3390/app12147095 kostenfrei https://doaj.org/article/e46abc301703497e957ca11c63ba3812 kostenfrei https://www.mdpi.com/2076-3417/12/14/7095 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 14, p 7095 |
spelling |
10.3390/app12147095 doi (DE-627)DOAJ033029288 (DE-599)DOAJe46abc301703497e957ca11c63ba3812 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Johannes Ramme verfasserin aut Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG). single-lip deep hole drilling process temperature in-process measurement monitoring simulation methods Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Robert Wegert verfasserin aut Vinzenz Guski verfasserin aut Siegfried Schmauder verfasserin aut Hans-Christian Moehring verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 14, p 7095 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:14, p 7095 https://doi.org/10.3390/app12147095 kostenfrei https://doaj.org/article/e46abc301703497e957ca11c63ba3812 kostenfrei https://www.mdpi.com/2076-3417/12/14/7095 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 14, p 7095 |
allfields_unstemmed |
10.3390/app12147095 doi (DE-627)DOAJ033029288 (DE-599)DOAJe46abc301703497e957ca11c63ba3812 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Johannes Ramme verfasserin aut Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG). single-lip deep hole drilling process temperature in-process measurement monitoring simulation methods Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Robert Wegert verfasserin aut Vinzenz Guski verfasserin aut Siegfried Schmauder verfasserin aut Hans-Christian Moehring verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 14, p 7095 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:14, p 7095 https://doi.org/10.3390/app12147095 kostenfrei https://doaj.org/article/e46abc301703497e957ca11c63ba3812 kostenfrei https://www.mdpi.com/2076-3417/12/14/7095 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 14, p 7095 |
allfieldsGer |
10.3390/app12147095 doi (DE-627)DOAJ033029288 (DE-599)DOAJe46abc301703497e957ca11c63ba3812 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Johannes Ramme verfasserin aut Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG). single-lip deep hole drilling process temperature in-process measurement monitoring simulation methods Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Robert Wegert verfasserin aut Vinzenz Guski verfasserin aut Siegfried Schmauder verfasserin aut Hans-Christian Moehring verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 14, p 7095 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:14, p 7095 https://doi.org/10.3390/app12147095 kostenfrei https://doaj.org/article/e46abc301703497e957ca11c63ba3812 kostenfrei https://www.mdpi.com/2076-3417/12/14/7095 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 14, p 7095 |
allfieldsSound |
10.3390/app12147095 doi (DE-627)DOAJ033029288 (DE-599)DOAJe46abc301703497e957ca11c63ba3812 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Johannes Ramme verfasserin aut Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG). single-lip deep hole drilling process temperature in-process measurement monitoring simulation methods Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Robert Wegert verfasserin aut Vinzenz Guski verfasserin aut Siegfried Schmauder verfasserin aut Hans-Christian Moehring verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 14, p 7095 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:14, p 7095 https://doi.org/10.3390/app12147095 kostenfrei https://doaj.org/article/e46abc301703497e957ca11c63ba3812 kostenfrei https://www.mdpi.com/2076-3417/12/14/7095 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 14, p 7095 |
language |
English |
source |
In Applied Sciences 12(2022), 14, p 7095 volume:12 year:2022 number:14, p 7095 |
sourceStr |
In Applied Sciences 12(2022), 14, p 7095 volume:12 year:2022 number:14, p 7095 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
single-lip deep hole drilling process temperature in-process measurement monitoring simulation methods Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Johannes Ramme @@aut@@ Robert Wegert @@aut@@ Vinzenz Guski @@aut@@ Siegfried Schmauder @@aut@@ Hans-Christian Moehring @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ033029288 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033029288</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414113648.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app12147095</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033029288</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe46abc301703497e957ca11c63ba3812</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Johannes Ramme</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single-lip deep hole drilling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">process temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-process measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simulation methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert Wegert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vinzenz Guski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siegfried Schmauder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hans-Christian Moehring</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 14, p 7095</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:14, p 7095</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app12147095</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e46abc301703497e957ca11c63ba3812</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/14/7095</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">14, p 7095</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Johannes Ramme |
spellingShingle |
Johannes Ramme misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc single-lip deep hole drilling misc process temperature misc in-process measurement misc monitoring misc simulation methods misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool |
authorStr |
Johannes Ramme |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool single-lip deep hole drilling process temperature in-process measurement monitoring simulation methods |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc single-lip deep hole drilling misc process temperature misc in-process measurement misc monitoring misc simulation methods misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc single-lip deep hole drilling misc process temperature misc in-process measurement misc monitoring misc simulation methods misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc single-lip deep hole drilling misc process temperature misc in-process measurement misc monitoring misc simulation methods misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool |
ctrlnum |
(DE-627)DOAJ033029288 (DE-599)DOAJe46abc301703497e957ca11c63ba3812 |
title_full |
Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool |
author_sort |
Johannes Ramme |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Johannes Ramme Robert Wegert Vinzenz Guski Siegfried Schmauder Hans-Christian Moehring |
container_volume |
12 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Johannes Ramme |
doi_str_mv |
10.3390/app12147095 |
author2-role |
verfasserin |
title_sort |
development of a multi-sensor concept for real-time temperature measurement at the cutting insert of a single-lip deep hole drilling tool |
callnumber |
TA1-2040 |
title_auth |
Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool |
abstract |
The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG). |
abstractGer |
The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG). |
abstract_unstemmed |
The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14, p 7095 |
title_short |
Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool |
url |
https://doi.org/10.3390/app12147095 https://doaj.org/article/e46abc301703497e957ca11c63ba3812 https://www.mdpi.com/2076-3417/12/14/7095 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Robert Wegert Vinzenz Guski Siegfried Schmauder Hans-Christian Moehring |
author2Str |
Robert Wegert Vinzenz Guski Siegfried Schmauder Hans-Christian Moehring |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app12147095 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T15:26:23.279Z |
_version_ |
1803572093420306432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033029288</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414113648.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app12147095</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033029288</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe46abc301703497e957ca11c63ba3812</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Johannes Ramme</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of a Multi-Sensor Concept for Real-Time Temperature Measurement at the Cutting Insert of a Single-Lip Deep Hole Drilling Tool</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The mechanical energy resulting from cutting processes is turned almost completely in thermal energy, which encourages thermal procedures, such as diffusion, leading to higher wear in the cutting tool and thus to higher temperatures. Furthermore, high temperatures influence the properties of the marginal zones in the workpiece. In this presented work, the in-process temperature of a cutting insert during single-lip deep hole drilling (SLD) is investigated. Therefore, a sensor-integrated tool with resistance temperature detectors (RTD) placed beneath the cutting insert is developed. First, the thermal properties of the cutting insert are adjusted to fit the assembled tool. Afterwards, a CEL-Simulation is obtained to examine the temperature distribution at the cutting edge of the SLD-tool. The temperatures calculated by simulation can be compared to the in-process temperatures of the sensor integrated tool. Because of the usage of a cooling lubricant, simulated temperatures can be varied with a factor to fit the experimentally measured temperature curves. The highest temperature during the process appears at the outer edge of the cutting insert. By knowing the thermal properties, the maximum process temperatures for the deep hole drilling operation are to be calculated. The results represent a contribution to an interdisciplinary research project “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single-lip deep hole drilling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">process temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">in-process measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simulation methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Robert Wegert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vinzenz Guski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siegfried Schmauder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hans-Christian Moehring</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 14, p 7095</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:14, p 7095</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app12147095</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e46abc301703497e957ca11c63ba3812</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/14/7095</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">14, p 7095</subfield></datafield></record></collection>
|
score |
7.4011936 |