Study on thermoelectric performance of thermochromic coating PV/T system
Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate w...
Ausführliche Beschreibung
Autor*in: |
Huilan Huang [verfasserIn] Liyan Huang [verfasserIn] Gang Li [verfasserIn] Donglin Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Hybrid photovoltaic/thermal solar system |
---|
Übergeordnetes Werk: |
In: Energy Reports - Elsevier, 2016, 8(2022), Seite 311-318 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; pages:311-318 |
Links: |
---|
DOI / URN: |
10.1016/j.egyr.2022.02.146 |
---|
Katalog-ID: |
DOAJ033389349 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ033389349 | ||
003 | DE-627 | ||
005 | 20230307175934.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.egyr.2022.02.146 |2 doi | |
035 | |a (DE-627)DOAJ033389349 | ||
035 | |a (DE-599)DOAJ46c1f372c25b49b3bf1c74b39152231b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Huilan Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on thermoelectric performance of thermochromic coating PV/T system |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems. | ||
650 | 4 | |a Hybrid photovoltaic/thermal solar system | |
650 | 4 | |a Thermochromic coating | |
650 | 4 | |a Spectral beam-splitting liquid | |
650 | 4 | |a Primary energy ratio | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Liyan Huang |e verfasserin |4 aut | |
700 | 0 | |a Gang Li |e verfasserin |4 aut | |
700 | 0 | |a Donglin Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energy Reports |d Elsevier, 2016 |g 8(2022), Seite 311-318 |w (DE-627)820689033 |w (DE-600)2814795-9 |x 23524847 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g pages:311-318 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.egyr.2022.02.146 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/46c1f372c25b49b3bf1c74b39152231b |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2352484722003936 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2352-4847 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |h 311-318 |
author_variant |
h h hh l h lh g l gl d w dw |
---|---|
matchkey_str |
article:23524847:2022----::tdotemeetipromnefhroho |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1016/j.egyr.2022.02.146 doi (DE-627)DOAJ033389349 (DE-599)DOAJ46c1f372c25b49b3bf1c74b39152231b DE-627 ger DE-627 rakwb eng TK1-9971 Huilan Huang verfasserin aut Study on thermoelectric performance of thermochromic coating PV/T system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems. Hybrid photovoltaic/thermal solar system Thermochromic coating Spectral beam-splitting liquid Primary energy ratio Electrical engineering. Electronics. Nuclear engineering Liyan Huang verfasserin aut Gang Li verfasserin aut Donglin Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 311-318 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:311-318 https://doi.org/10.1016/j.egyr.2022.02.146 kostenfrei https://doaj.org/article/46c1f372c25b49b3bf1c74b39152231b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722003936 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 311-318 |
spelling |
10.1016/j.egyr.2022.02.146 doi (DE-627)DOAJ033389349 (DE-599)DOAJ46c1f372c25b49b3bf1c74b39152231b DE-627 ger DE-627 rakwb eng TK1-9971 Huilan Huang verfasserin aut Study on thermoelectric performance of thermochromic coating PV/T system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems. Hybrid photovoltaic/thermal solar system Thermochromic coating Spectral beam-splitting liquid Primary energy ratio Electrical engineering. Electronics. Nuclear engineering Liyan Huang verfasserin aut Gang Li verfasserin aut Donglin Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 311-318 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:311-318 https://doi.org/10.1016/j.egyr.2022.02.146 kostenfrei https://doaj.org/article/46c1f372c25b49b3bf1c74b39152231b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722003936 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 311-318 |
allfields_unstemmed |
10.1016/j.egyr.2022.02.146 doi (DE-627)DOAJ033389349 (DE-599)DOAJ46c1f372c25b49b3bf1c74b39152231b DE-627 ger DE-627 rakwb eng TK1-9971 Huilan Huang verfasserin aut Study on thermoelectric performance of thermochromic coating PV/T system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems. Hybrid photovoltaic/thermal solar system Thermochromic coating Spectral beam-splitting liquid Primary energy ratio Electrical engineering. Electronics. Nuclear engineering Liyan Huang verfasserin aut Gang Li verfasserin aut Donglin Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 311-318 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:311-318 https://doi.org/10.1016/j.egyr.2022.02.146 kostenfrei https://doaj.org/article/46c1f372c25b49b3bf1c74b39152231b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722003936 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 311-318 |
allfieldsGer |
10.1016/j.egyr.2022.02.146 doi (DE-627)DOAJ033389349 (DE-599)DOAJ46c1f372c25b49b3bf1c74b39152231b DE-627 ger DE-627 rakwb eng TK1-9971 Huilan Huang verfasserin aut Study on thermoelectric performance of thermochromic coating PV/T system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems. Hybrid photovoltaic/thermal solar system Thermochromic coating Spectral beam-splitting liquid Primary energy ratio Electrical engineering. Electronics. Nuclear engineering Liyan Huang verfasserin aut Gang Li verfasserin aut Donglin Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 311-318 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:311-318 https://doi.org/10.1016/j.egyr.2022.02.146 kostenfrei https://doaj.org/article/46c1f372c25b49b3bf1c74b39152231b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722003936 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 311-318 |
allfieldsSound |
10.1016/j.egyr.2022.02.146 doi (DE-627)DOAJ033389349 (DE-599)DOAJ46c1f372c25b49b3bf1c74b39152231b DE-627 ger DE-627 rakwb eng TK1-9971 Huilan Huang verfasserin aut Study on thermoelectric performance of thermochromic coating PV/T system 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems. Hybrid photovoltaic/thermal solar system Thermochromic coating Spectral beam-splitting liquid Primary energy ratio Electrical engineering. Electronics. Nuclear engineering Liyan Huang verfasserin aut Gang Li verfasserin aut Donglin Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 311-318 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:311-318 https://doi.org/10.1016/j.egyr.2022.02.146 kostenfrei https://doaj.org/article/46c1f372c25b49b3bf1c74b39152231b kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722003936 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 311-318 |
language |
English |
source |
In Energy Reports 8(2022), Seite 311-318 volume:8 year:2022 pages:311-318 |
sourceStr |
In Energy Reports 8(2022), Seite 311-318 volume:8 year:2022 pages:311-318 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hybrid photovoltaic/thermal solar system Thermochromic coating Spectral beam-splitting liquid Primary energy ratio Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
Energy Reports |
authorswithroles_txt_mv |
Huilan Huang @@aut@@ Liyan Huang @@aut@@ Gang Li @@aut@@ Donglin Wang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
820689033 |
id |
DOAJ033389349 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033389349</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307175934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.egyr.2022.02.146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033389349</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ46c1f372c25b49b3bf1c74b39152231b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Huilan Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on thermoelectric performance of thermochromic coating PV/T system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid photovoltaic/thermal solar system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermochromic coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral beam-splitting liquid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary energy ratio</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liyan Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donglin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), Seite 311-318</subfield><subfield code="w">(DE-627)820689033</subfield><subfield code="w">(DE-600)2814795-9</subfield><subfield code="x">23524847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:311-318</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.egyr.2022.02.146</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/46c1f372c25b49b3bf1c74b39152231b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352484722003936</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-4847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="h">311-318</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Huilan Huang |
spellingShingle |
Huilan Huang misc TK1-9971 misc Hybrid photovoltaic/thermal solar system misc Thermochromic coating misc Spectral beam-splitting liquid misc Primary energy ratio misc Electrical engineering. Electronics. Nuclear engineering Study on thermoelectric performance of thermochromic coating PV/T system |
authorStr |
Huilan Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820689033 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
23524847 |
topic_title |
TK1-9971 Study on thermoelectric performance of thermochromic coating PV/T system Hybrid photovoltaic/thermal solar system Thermochromic coating Spectral beam-splitting liquid Primary energy ratio |
topic |
misc TK1-9971 misc Hybrid photovoltaic/thermal solar system misc Thermochromic coating misc Spectral beam-splitting liquid misc Primary energy ratio misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Hybrid photovoltaic/thermal solar system misc Thermochromic coating misc Spectral beam-splitting liquid misc Primary energy ratio misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Hybrid photovoltaic/thermal solar system misc Thermochromic coating misc Spectral beam-splitting liquid misc Primary energy ratio misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy Reports |
hierarchy_parent_id |
820689033 |
hierarchy_top_title |
Energy Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820689033 (DE-600)2814795-9 |
title |
Study on thermoelectric performance of thermochromic coating PV/T system |
ctrlnum |
(DE-627)DOAJ033389349 (DE-599)DOAJ46c1f372c25b49b3bf1c74b39152231b |
title_full |
Study on thermoelectric performance of thermochromic coating PV/T system |
author_sort |
Huilan Huang |
journal |
Energy Reports |
journalStr |
Energy Reports |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
311 |
author_browse |
Huilan Huang Liyan Huang Gang Li Donglin Wang |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Huilan Huang |
doi_str_mv |
10.1016/j.egyr.2022.02.146 |
author2-role |
verfasserin |
title_sort |
study on thermoelectric performance of thermochromic coating pv/t system |
callnumber |
TK1-9971 |
title_auth |
Study on thermoelectric performance of thermochromic coating PV/T system |
abstract |
Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems. |
abstractGer |
Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems. |
abstract_unstemmed |
Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Study on thermoelectric performance of thermochromic coating PV/T system |
url |
https://doi.org/10.1016/j.egyr.2022.02.146 https://doaj.org/article/46c1f372c25b49b3bf1c74b39152231b http://www.sciencedirect.com/science/article/pii/S2352484722003936 https://doaj.org/toc/2352-4847 |
remote_bool |
true |
author2 |
Liyan Huang Gang Li Donglin Wang |
author2Str |
Liyan Huang Gang Li Donglin Wang |
ppnlink |
820689033 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.egyr.2022.02.146 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T17:29:24.535Z |
_version_ |
1803579833226100736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033389349</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307175934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.egyr.2022.02.146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033389349</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ46c1f372c25b49b3bf1c74b39152231b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Huilan Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on thermoelectric performance of thermochromic coating PV/T system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Solar thermal and photovoltaic unit on traditional PV/T system are restrict each other because the collector is installed on the photovoltaic unit. Some coating cover plates were prepared with thermochromic materials of that application in industry, textiles and daily life. The coating cover plate will adjust its optical properties due to the temperature. An innovative thermochromic coating PV/T system was established. The comprehensive experimental device was set up for carrying out test in simulation. Comparing with the fluid beam-splitting PV/T system, there is more difference in the ray transmittance of the thermochromic coating cover plate before periods after discoloration. When temperature is less 45 °C, the heat-collecting effect is better whereas more 45 °C it decreases and then the ray transmittance and the performance of photovoltaic power generation for system are improved. When the mass fraction of 500 nm graphite powder added to the thermochromic coating is 2‰, the heat-collecting effect is the best, and the rate of primary energy utilization of the system is 40.1% in maximum value. The thermochromic coating PV/T system can flexibly adjust the use of photovoltaic power and thermal energy. When the water temperature is lower, the thermochromic coating PV/T system mainly collects heat and generates electricity as a supplement. After reaching the hot water requirement, the system reduces heat-collecting function and improves the photovoltaic power generation capacity, and it is of great practical value. The research results can provide a new solutions method for the application of PV/T systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid photovoltaic/thermal solar system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermochromic coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral beam-splitting liquid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary energy ratio</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liyan Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donglin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), Seite 311-318</subfield><subfield code="w">(DE-627)820689033</subfield><subfield code="w">(DE-600)2814795-9</subfield><subfield code="x">23524847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:311-318</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.egyr.2022.02.146</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/46c1f372c25b49b3bf1c74b39152231b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352484722003936</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-4847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="h">311-318</subfield></datafield></record></collection>
|
score |
7.401725 |