Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm
Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform...
Ausführliche Beschreibung
Autor*in: |
B. V. P Prasad [verfasserIn] Velusamy Parthasarathy [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Biotechnology & Biotechnological Equipment - Taylor & Francis Group, 2016, 32(2018), 1, Seite 183-193 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2018 ; number:1 ; pages:183-193 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1080/13102818.2017.1389303 |
---|
Katalog-ID: |
DOAJ03362416X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ03362416X | ||
003 | DE-627 | ||
005 | 20230307181450.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/13102818.2017.1389303 |2 doi | |
035 | |a (DE-627)DOAJ03362416X | ||
035 | |a (DE-599)DOAJff0cf8c715cd48ecaf5788285d9942ce | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
100 | 0 | |a B. V. P Prasad |e verfasserin |4 aut | |
245 | 1 | 0 | |a Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients. | ||
650 | 4 | |a Fast Fourier Transform (FFT) | |
650 | 4 | |a cardiovascular abnormalities | |
650 | 4 | |a electrocardiogram (ECG) | |
650 | 4 | |a multi-objective genetic algorithm | |
650 | 4 | |a abnormalities | |
653 | 0 | |a Biotechnology | |
700 | 0 | |a Velusamy Parthasarathy |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Biotechnology & Biotechnological Equipment |d Taylor & Francis Group, 2016 |g 32(2018), 1, Seite 183-193 |w (DE-627)555687376 |w (DE-600)2400627-0 |x 13143530 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2018 |g number:1 |g pages:183-193 |
856 | 4 | 0 | |u https://doi.org/10.1080/13102818.2017.1389303 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ff0cf8c715cd48ecaf5788285d9942ce |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1080/13102818.2017.1389303 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1310-2818 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1314-3530 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 32 |j 2018 |e 1 |h 183-193 |
author_variant |
b v p p bvpp v p vp |
---|---|
matchkey_str |
article:13143530:2018----::eetoadlsiiainfadoaclrbomlteuigfbsdut |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TP |
publishDate |
2018 |
allfields |
10.1080/13102818.2017.1389303 doi (DE-627)DOAJ03362416X (DE-599)DOAJff0cf8c715cd48ecaf5788285d9942ce DE-627 ger DE-627 rakwb eng TP248.13-248.65 B. V. P Prasad verfasserin aut Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients. Fast Fourier Transform (FFT) cardiovascular abnormalities electrocardiogram (ECG) multi-objective genetic algorithm abnormalities Biotechnology Velusamy Parthasarathy verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 32(2018), 1, Seite 183-193 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:32 year:2018 number:1 pages:183-193 https://doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/article/ff0cf8c715cd48ecaf5788285d9942ce kostenfrei http://dx.doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2018 1 183-193 |
spelling |
10.1080/13102818.2017.1389303 doi (DE-627)DOAJ03362416X (DE-599)DOAJff0cf8c715cd48ecaf5788285d9942ce DE-627 ger DE-627 rakwb eng TP248.13-248.65 B. V. P Prasad verfasserin aut Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients. Fast Fourier Transform (FFT) cardiovascular abnormalities electrocardiogram (ECG) multi-objective genetic algorithm abnormalities Biotechnology Velusamy Parthasarathy verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 32(2018), 1, Seite 183-193 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:32 year:2018 number:1 pages:183-193 https://doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/article/ff0cf8c715cd48ecaf5788285d9942ce kostenfrei http://dx.doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2018 1 183-193 |
allfields_unstemmed |
10.1080/13102818.2017.1389303 doi (DE-627)DOAJ03362416X (DE-599)DOAJff0cf8c715cd48ecaf5788285d9942ce DE-627 ger DE-627 rakwb eng TP248.13-248.65 B. V. P Prasad verfasserin aut Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients. Fast Fourier Transform (FFT) cardiovascular abnormalities electrocardiogram (ECG) multi-objective genetic algorithm abnormalities Biotechnology Velusamy Parthasarathy verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 32(2018), 1, Seite 183-193 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:32 year:2018 number:1 pages:183-193 https://doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/article/ff0cf8c715cd48ecaf5788285d9942ce kostenfrei http://dx.doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2018 1 183-193 |
allfieldsGer |
10.1080/13102818.2017.1389303 doi (DE-627)DOAJ03362416X (DE-599)DOAJff0cf8c715cd48ecaf5788285d9942ce DE-627 ger DE-627 rakwb eng TP248.13-248.65 B. V. P Prasad verfasserin aut Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients. Fast Fourier Transform (FFT) cardiovascular abnormalities electrocardiogram (ECG) multi-objective genetic algorithm abnormalities Biotechnology Velusamy Parthasarathy verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 32(2018), 1, Seite 183-193 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:32 year:2018 number:1 pages:183-193 https://doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/article/ff0cf8c715cd48ecaf5788285d9942ce kostenfrei http://dx.doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2018 1 183-193 |
allfieldsSound |
10.1080/13102818.2017.1389303 doi (DE-627)DOAJ03362416X (DE-599)DOAJff0cf8c715cd48ecaf5788285d9942ce DE-627 ger DE-627 rakwb eng TP248.13-248.65 B. V. P Prasad verfasserin aut Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients. Fast Fourier Transform (FFT) cardiovascular abnormalities electrocardiogram (ECG) multi-objective genetic algorithm abnormalities Biotechnology Velusamy Parthasarathy verfasserin aut In Biotechnology & Biotechnological Equipment Taylor & Francis Group, 2016 32(2018), 1, Seite 183-193 (DE-627)555687376 (DE-600)2400627-0 13143530 nnns volume:32 year:2018 number:1 pages:183-193 https://doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/article/ff0cf8c715cd48ecaf5788285d9942ce kostenfrei http://dx.doi.org/10.1080/13102818.2017.1389303 kostenfrei https://doaj.org/toc/1310-2818 Journal toc kostenfrei https://doaj.org/toc/1314-3530 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2018 1 183-193 |
language |
English |
source |
In Biotechnology & Biotechnological Equipment 32(2018), 1, Seite 183-193 volume:32 year:2018 number:1 pages:183-193 |
sourceStr |
In Biotechnology & Biotechnological Equipment 32(2018), 1, Seite 183-193 volume:32 year:2018 number:1 pages:183-193 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fast Fourier Transform (FFT) cardiovascular abnormalities electrocardiogram (ECG) multi-objective genetic algorithm abnormalities Biotechnology |
isfreeaccess_bool |
true |
container_title |
Biotechnology & Biotechnological Equipment |
authorswithroles_txt_mv |
B. V. P Prasad @@aut@@ Velusamy Parthasarathy @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
555687376 |
id |
DOAJ03362416X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03362416X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307181450.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/13102818.2017.1389303</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03362416X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJff0cf8c715cd48ecaf5788285d9942ce</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">B. V. P Prasad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fast Fourier Transform (FFT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cardiovascular abnormalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrocardiogram (ECG)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-objective genetic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">abnormalities</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Velusamy Parthasarathy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biotechnology & Biotechnological Equipment</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">32(2018), 1, Seite 183-193</subfield><subfield code="w">(DE-627)555687376</subfield><subfield code="w">(DE-600)2400627-0</subfield><subfield code="x">13143530</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:183-193</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/13102818.2017.1389303</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ff0cf8c715cd48ecaf5788285d9942ce</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/13102818.2017.1389303</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1310-2818</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1314-3530</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">183-193</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
B. V. P Prasad |
spellingShingle |
B. V. P Prasad misc TP248.13-248.65 misc Fast Fourier Transform (FFT) misc cardiovascular abnormalities misc electrocardiogram (ECG) misc multi-objective genetic algorithm misc abnormalities misc Biotechnology Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm |
authorStr |
B. V. P Prasad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)555687376 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
13143530 |
topic_title |
TP248.13-248.65 Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm Fast Fourier Transform (FFT) cardiovascular abnormalities electrocardiogram (ECG) multi-objective genetic algorithm abnormalities |
topic |
misc TP248.13-248.65 misc Fast Fourier Transform (FFT) misc cardiovascular abnormalities misc electrocardiogram (ECG) misc multi-objective genetic algorithm misc abnormalities misc Biotechnology |
topic_unstemmed |
misc TP248.13-248.65 misc Fast Fourier Transform (FFT) misc cardiovascular abnormalities misc electrocardiogram (ECG) misc multi-objective genetic algorithm misc abnormalities misc Biotechnology |
topic_browse |
misc TP248.13-248.65 misc Fast Fourier Transform (FFT) misc cardiovascular abnormalities misc electrocardiogram (ECG) misc multi-objective genetic algorithm misc abnormalities misc Biotechnology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biotechnology & Biotechnological Equipment |
hierarchy_parent_id |
555687376 |
hierarchy_top_title |
Biotechnology & Biotechnological Equipment |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)555687376 (DE-600)2400627-0 |
title |
Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm |
ctrlnum |
(DE-627)DOAJ03362416X (DE-599)DOAJff0cf8c715cd48ecaf5788285d9942ce |
title_full |
Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm |
author_sort |
B. V. P Prasad |
journal |
Biotechnology & Biotechnological Equipment |
journalStr |
Biotechnology & Biotechnological Equipment |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
183 |
author_browse |
B. V. P Prasad Velusamy Parthasarathy |
container_volume |
32 |
class |
TP248.13-248.65 |
format_se |
Elektronische Aufsätze |
author-letter |
B. V. P Prasad |
doi_str_mv |
10.1080/13102818.2017.1389303 |
author2-role |
verfasserin |
title_sort |
detection and classification of cardiovascular abnormalities using fft based multi-objective genetic algorithm |
callnumber |
TP248.13-248.65 |
title_auth |
Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm |
abstract |
Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients. |
abstractGer |
Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients. |
abstract_unstemmed |
Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm |
url |
https://doi.org/10.1080/13102818.2017.1389303 https://doaj.org/article/ff0cf8c715cd48ecaf5788285d9942ce http://dx.doi.org/10.1080/13102818.2017.1389303 https://doaj.org/toc/1310-2818 https://doaj.org/toc/1314-3530 |
remote_bool |
true |
author2 |
Velusamy Parthasarathy |
author2Str |
Velusamy Parthasarathy |
ppnlink |
555687376 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/13102818.2017.1389303 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-03T18:48:15.288Z |
_version_ |
1803584793779109888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ03362416X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307181450.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/13102818.2017.1389303</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ03362416X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJff0cf8c715cd48ecaf5788285d9942ce</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">B. V. P Prasad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection and classification of cardiovascular abnormalities using FFT based multi-objective genetic algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Signal processing and data analysis are widely used methods in a biomedical research. In recent years, detection of cardiovascular abnormalities in patients can be achieved by using electrocardiogram (ECG) recording. In this paper, a fuzzy-based multi-objective algorithm using Fast Fourier Transform (FFT) is proposed. Initially, an effective FFT is used to extract the feature points in ECG signals, such as PQRST wave's amplitude and wave function and then the proposed multi-objective genetic algorithm is used to classify the abnormality of heart patient. Basically, the ECG behaviour depends on various factors such as age, physical condition of patients and the surrounding environment. The efficient detection of abnormalities (e.g. arrhythmia and myocardial abstraction) can be achieved by initializing the above-mentioned factors and maintaining a database containing previously attributed signals, such MIT-BIH arrhythmia. The present study provides efficiency of around 98.7% in detection of abnormalities in patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fast Fourier Transform (FFT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cardiovascular abnormalities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrocardiogram (ECG)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-objective genetic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">abnormalities</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Velusamy Parthasarathy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biotechnology & Biotechnological Equipment</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">32(2018), 1, Seite 183-193</subfield><subfield code="w">(DE-627)555687376</subfield><subfield code="w">(DE-600)2400627-0</subfield><subfield code="x">13143530</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:183-193</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/13102818.2017.1389303</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ff0cf8c715cd48ecaf5788285d9942ce</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/13102818.2017.1389303</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1310-2818</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1314-3530</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">183-193</subfield></datafield></record></collection>
|
score |
7.4009123 |