Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites
Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedu...
Ausführliche Beschreibung
Autor*in: |
Ida Katičić Bogdan [verfasserIn] Davorin Kajba [verfasserIn] Zlatko Šatović [verfasserIn] Silvio Schüler [verfasserIn] Saša Bogdan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: South-East European Forestry - Croatian Forest Research Institute, 2015, 9(2018), 1, Seite 29-46 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2018 ; number:1 ; pages:29-46 |
Links: |
---|
Katalog-ID: |
DOAJ033632944 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ033632944 | ||
003 | DE-627 | ||
005 | 20230307181525.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ033632944 | ||
035 | |a (DE-599)DOAJ80c03c9776d84c51abae48f04d57215f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SD1-669.5 | |
100 | 0 | |a Ida Katičić Bogdan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy. | ||
650 | 4 | |a plus trees | |
650 | 4 | |a clonal seed orchards | |
650 | 4 | |a seed regions | |
650 | 4 | |a genetic differentiation | |
650 | 4 | |a haplotypic lineages | |
650 | 4 | |a spatial autocorrelation analysis | |
653 | 0 | |a Forestry | |
700 | 0 | |a Davorin Kajba |e verfasserin |4 aut | |
700 | 0 | |a Zlatko Šatović |e verfasserin |4 aut | |
700 | 0 | |a Silvio Schüler |e verfasserin |4 aut | |
700 | 0 | |a Saša Bogdan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t South-East European Forestry |d Croatian Forest Research Institute, 2015 |g 9(2018), 1, Seite 29-46 |w (DE-627)828845212 |w (DE-600)2826137-9 |x 18490891 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2018 |g number:1 |g pages:29-46 |
856 | 4 | 0 | |u https://doaj.org/article/80c03c9776d84c51abae48f04d57215f |z kostenfrei |
856 | 4 | 0 | |u http://hrcak.srce.hr/file/299599 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1847-6481 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1849-0891 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2018 |e 1 |h 29-46 |
author_variant |
i k b ikb d k dk z š zš s s ss s b sb |
---|---|
matchkey_str |
article:18490891:2018----::eeidvriyfeucltokururbricoaseocadicotasesdyula |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
SD |
publishDate |
2018 |
allfields |
(DE-627)DOAJ033632944 (DE-599)DOAJ80c03c9776d84c51abae48f04d57215f DE-627 ger DE-627 rakwb eng SD1-669.5 Ida Katičić Bogdan verfasserin aut Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy. plus trees clonal seed orchards seed regions genetic differentiation haplotypic lineages spatial autocorrelation analysis Forestry Davorin Kajba verfasserin aut Zlatko Šatović verfasserin aut Silvio Schüler verfasserin aut Saša Bogdan verfasserin aut In South-East European Forestry Croatian Forest Research Institute, 2015 9(2018), 1, Seite 29-46 (DE-627)828845212 (DE-600)2826137-9 18490891 nnns volume:9 year:2018 number:1 pages:29-46 https://doaj.org/article/80c03c9776d84c51abae48f04d57215f kostenfrei http://hrcak.srce.hr/file/299599 kostenfrei https://doaj.org/toc/1847-6481 Journal toc kostenfrei https://doaj.org/toc/1849-0891 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 1 29-46 |
spelling |
(DE-627)DOAJ033632944 (DE-599)DOAJ80c03c9776d84c51abae48f04d57215f DE-627 ger DE-627 rakwb eng SD1-669.5 Ida Katičić Bogdan verfasserin aut Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy. plus trees clonal seed orchards seed regions genetic differentiation haplotypic lineages spatial autocorrelation analysis Forestry Davorin Kajba verfasserin aut Zlatko Šatović verfasserin aut Silvio Schüler verfasserin aut Saša Bogdan verfasserin aut In South-East European Forestry Croatian Forest Research Institute, 2015 9(2018), 1, Seite 29-46 (DE-627)828845212 (DE-600)2826137-9 18490891 nnns volume:9 year:2018 number:1 pages:29-46 https://doaj.org/article/80c03c9776d84c51abae48f04d57215f kostenfrei http://hrcak.srce.hr/file/299599 kostenfrei https://doaj.org/toc/1847-6481 Journal toc kostenfrei https://doaj.org/toc/1849-0891 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 1 29-46 |
allfields_unstemmed |
(DE-627)DOAJ033632944 (DE-599)DOAJ80c03c9776d84c51abae48f04d57215f DE-627 ger DE-627 rakwb eng SD1-669.5 Ida Katičić Bogdan verfasserin aut Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy. plus trees clonal seed orchards seed regions genetic differentiation haplotypic lineages spatial autocorrelation analysis Forestry Davorin Kajba verfasserin aut Zlatko Šatović verfasserin aut Silvio Schüler verfasserin aut Saša Bogdan verfasserin aut In South-East European Forestry Croatian Forest Research Institute, 2015 9(2018), 1, Seite 29-46 (DE-627)828845212 (DE-600)2826137-9 18490891 nnns volume:9 year:2018 number:1 pages:29-46 https://doaj.org/article/80c03c9776d84c51abae48f04d57215f kostenfrei http://hrcak.srce.hr/file/299599 kostenfrei https://doaj.org/toc/1847-6481 Journal toc kostenfrei https://doaj.org/toc/1849-0891 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 1 29-46 |
allfieldsGer |
(DE-627)DOAJ033632944 (DE-599)DOAJ80c03c9776d84c51abae48f04d57215f DE-627 ger DE-627 rakwb eng SD1-669.5 Ida Katičić Bogdan verfasserin aut Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy. plus trees clonal seed orchards seed regions genetic differentiation haplotypic lineages spatial autocorrelation analysis Forestry Davorin Kajba verfasserin aut Zlatko Šatović verfasserin aut Silvio Schüler verfasserin aut Saša Bogdan verfasserin aut In South-East European Forestry Croatian Forest Research Institute, 2015 9(2018), 1, Seite 29-46 (DE-627)828845212 (DE-600)2826137-9 18490891 nnns volume:9 year:2018 number:1 pages:29-46 https://doaj.org/article/80c03c9776d84c51abae48f04d57215f kostenfrei http://hrcak.srce.hr/file/299599 kostenfrei https://doaj.org/toc/1847-6481 Journal toc kostenfrei https://doaj.org/toc/1849-0891 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 1 29-46 |
allfieldsSound |
(DE-627)DOAJ033632944 (DE-599)DOAJ80c03c9776d84c51abae48f04d57215f DE-627 ger DE-627 rakwb eng SD1-669.5 Ida Katičić Bogdan verfasserin aut Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy. plus trees clonal seed orchards seed regions genetic differentiation haplotypic lineages spatial autocorrelation analysis Forestry Davorin Kajba verfasserin aut Zlatko Šatović verfasserin aut Silvio Schüler verfasserin aut Saša Bogdan verfasserin aut In South-East European Forestry Croatian Forest Research Institute, 2015 9(2018), 1, Seite 29-46 (DE-627)828845212 (DE-600)2826137-9 18490891 nnns volume:9 year:2018 number:1 pages:29-46 https://doaj.org/article/80c03c9776d84c51abae48f04d57215f kostenfrei http://hrcak.srce.hr/file/299599 kostenfrei https://doaj.org/toc/1847-6481 Journal toc kostenfrei https://doaj.org/toc/1849-0891 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 9 2018 1 29-46 |
language |
English |
source |
In South-East European Forestry 9(2018), 1, Seite 29-46 volume:9 year:2018 number:1 pages:29-46 |
sourceStr |
In South-East European Forestry 9(2018), 1, Seite 29-46 volume:9 year:2018 number:1 pages:29-46 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
plus trees clonal seed orchards seed regions genetic differentiation haplotypic lineages spatial autocorrelation analysis Forestry |
isfreeaccess_bool |
true |
container_title |
South-East European Forestry |
authorswithroles_txt_mv |
Ida Katičić Bogdan @@aut@@ Davorin Kajba @@aut@@ Zlatko Šatović @@aut@@ Silvio Schüler @@aut@@ Saša Bogdan @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
828845212 |
id |
DOAJ033632944 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033632944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307181525.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033632944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ80c03c9776d84c51abae48f04d57215f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SD1-669.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ida Katičić Bogdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plus trees</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clonal seed orchards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seed regions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic differentiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">haplotypic lineages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial autocorrelation analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Forestry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Davorin Kajba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zlatko Šatović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Silvio Schüler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saša Bogdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">South-East European Forestry</subfield><subfield code="d">Croatian Forest Research Institute, 2015</subfield><subfield code="g">9(2018), 1, Seite 29-46</subfield><subfield code="w">(DE-627)828845212</subfield><subfield code="w">(DE-600)2826137-9</subfield><subfield code="x">18490891</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:29-46</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/80c03c9776d84c51abae48f04d57215f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://hrcak.srce.hr/file/299599</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1847-6481</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1849-0891</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">29-46</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Ida Katičić Bogdan |
spellingShingle |
Ida Katičić Bogdan misc SD1-669.5 misc plus trees misc clonal seed orchards misc seed regions misc genetic differentiation misc haplotypic lineages misc spatial autocorrelation analysis misc Forestry Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites |
authorStr |
Ida Katičić Bogdan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)828845212 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SD1-669 |
illustrated |
Not Illustrated |
issn |
18490891 |
topic_title |
SD1-669.5 Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites plus trees clonal seed orchards seed regions genetic differentiation haplotypic lineages spatial autocorrelation analysis |
topic |
misc SD1-669.5 misc plus trees misc clonal seed orchards misc seed regions misc genetic differentiation misc haplotypic lineages misc spatial autocorrelation analysis misc Forestry |
topic_unstemmed |
misc SD1-669.5 misc plus trees misc clonal seed orchards misc seed regions misc genetic differentiation misc haplotypic lineages misc spatial autocorrelation analysis misc Forestry |
topic_browse |
misc SD1-669.5 misc plus trees misc clonal seed orchards misc seed regions misc genetic differentiation misc haplotypic lineages misc spatial autocorrelation analysis misc Forestry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
South-East European Forestry |
hierarchy_parent_id |
828845212 |
hierarchy_top_title |
South-East European Forestry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)828845212 (DE-600)2826137-9 |
title |
Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites |
ctrlnum |
(DE-627)DOAJ033632944 (DE-599)DOAJ80c03c9776d84c51abae48f04d57215f |
title_full |
Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites |
author_sort |
Ida Katičić Bogdan |
journal |
South-East European Forestry |
journalStr |
South-East European Forestry |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
29 |
author_browse |
Ida Katičić Bogdan Davorin Kajba Zlatko Šatović Silvio Schüler Saša Bogdan |
container_volume |
9 |
class |
SD1-669.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Ida Katičić Bogdan |
author2-role |
verfasserin |
title_sort |
genetic diversity of pedunculate oak (quercus robur l.) in clonal seed orchards in croatia, assessed by nuclear and chloroplast microsatellites |
callnumber |
SD1-669.5 |
title_auth |
Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites |
abstract |
Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy. |
abstractGer |
Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy. |
abstract_unstemmed |
Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites |
url |
https://doaj.org/article/80c03c9776d84c51abae48f04d57215f http://hrcak.srce.hr/file/299599 https://doaj.org/toc/1847-6481 https://doaj.org/toc/1849-0891 |
remote_bool |
true |
author2 |
Davorin Kajba Zlatko Šatović Silvio Schüler Saša Bogdan |
author2Str |
Davorin Kajba Zlatko Šatović Silvio Schüler Saša Bogdan |
ppnlink |
828845212 |
callnumber-subject |
SD - Forestry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
SD1-669.5 |
up_date |
2024-07-03T18:50:49.150Z |
_version_ |
1803584955118256128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033632944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307181525.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033632944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ80c03c9776d84c51abae48f04d57215f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SD1-669.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ida Katičić Bogdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genetic Diversity of Pedunculate Oak (Quercus robur L.) in Clonal Seed Orchards in Croatia, Assessed by Nuclear and Chloroplast Microsatellites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and Purpose: Natural stands of pedunculate oak in Croatia have been delineated in seed areas, zones and regions. The current bylaw recommends that the transfer of reproductive material remains limited within zones, but that it is permitted within areas. Clonal seed orchards (CSOs) of pedunculate oak were established to increase genetic quality of seed and to acquire a more regular seed yield than in natural stands. In total 150 plus trees were selected within three seed regions. The selection included a number of favourable traits of tree size and stem quality. Three CSOs were planted with grafted plus-trees. We aimed to establish whether these orchards encompass enough genetic diversity to potentially produce genetically improved and sufficiently diverse reproductive material. We also wanted to assess neutral genetic differentiation between these orchards and compare it with the genetic diversity obtained from chloroplast DNA markers, depicting conserved lineages from recolonization routes. We wanted to investigate spatial genetic structure in the area of our research and provide additional information on the transfer of forest reproductive material. Materials and Methods: Leaves were collected from all clones in the CSOs. Total genomic DNA was extracted and clones were analysed with eight nuclear and ten chloroplast microsatellite markers. Spatial autocorrelation analysis was performed with nuclear microsatellite data and original plus trees’ coordinates, for each CSO separately, to determine whether shared favourable traits among the selected plus trees in smaller distances are the results of relatedness, which the sampling strategy tried to avoid. Results: We found 28 chloroplast haplotypes belonging to four maternal lineages, and significant differentiation between CSOs, indicating origin from different refuges. Nuclear microsatellites’ diversity in the CSOs is quite high and comparable to diversity found within a recent study of Croatian natural populations. Nuclear microsatellites did not show genetic differentiation between CSOs, i.e. between the seed regions and seed zones they represent. No genetic differentiation was found with nuclear microsatellites among haplotypic lineages. We found no genetic structure within the analysed regions. Conclusions: Lack of differentiation between CSOs found with nuclear microsatellites confirms the permission for transfer of reproductive material between zones within the seed area 1 - Lowland Forests. If original differentiation between chloroplast haplotypic lineages was present after recolonization, it was erased by subsequent gene flow. Lack of genetic structure, with nuclear microsatellites within regions indicates successful sampling strategy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plus trees</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clonal seed orchards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seed regions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic differentiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">haplotypic lineages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial autocorrelation analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Forestry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Davorin Kajba</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zlatko Šatović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Silvio Schüler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saša Bogdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">South-East European Forestry</subfield><subfield code="d">Croatian Forest Research Institute, 2015</subfield><subfield code="g">9(2018), 1, Seite 29-46</subfield><subfield code="w">(DE-627)828845212</subfield><subfield code="w">(DE-600)2826137-9</subfield><subfield code="x">18490891</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:29-46</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/80c03c9776d84c51abae48f04d57215f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://hrcak.srce.hr/file/299599</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1847-6481</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1849-0891</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">29-46</subfield></datafield></record></collection>
|
score |
7.4011316 |