Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support
Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently...
Ausführliche Beschreibung
Autor*in: |
Samsuri Abdullah [verfasserIn] Marzuki Ismail [verfasserIn] Ali Najah Ahmed [verfasserIn] Ahmad Makmom Abdullah [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Atmosphere - MDPI AG, 2011, 10(2019), 11, p 667 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2019 ; number:11, p 667 |
Links: |
---|
DOI / URN: |
10.3390/atmos10110667 |
---|
Katalog-ID: |
DOAJ033650268 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ033650268 | ||
003 | DE-627 | ||
005 | 20230307181634.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/atmos10110667 |2 doi | |
035 | |a (DE-627)DOAJ033650268 | ||
035 | |a (DE-599)DOAJ48ae32f3ae8b4382b0d2c9e09798757c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC851-999 | |
100 | 0 | |a Samsuri Abdullah |e verfasserin |4 aut | |
245 | 1 | 0 | |a Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia. | ||
650 | 4 | |a particulate matter | |
650 | 4 | |a forecasting | |
650 | 4 | |a air quality | |
650 | 4 | |a malaysia | |
653 | 0 | |a Meteorology. Climatology | |
700 | 0 | |a Marzuki Ismail |e verfasserin |4 aut | |
700 | 0 | |a Ali Najah Ahmed |e verfasserin |4 aut | |
700 | 0 | |a Ahmad Makmom Abdullah |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmosphere |d MDPI AG, 2011 |g 10(2019), 11, p 667 |w (DE-627)657584010 |w (DE-600)2605928-9 |x 20734433 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2019 |g number:11, p 667 |
856 | 4 | 0 | |u https://doi.org/10.3390/atmos10110667 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/48ae32f3ae8b4382b0d2c9e09798757c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4433/10/11/667 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4433 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2019 |e 11, p 667 |
author_variant |
s a sa m i mi a n a ana a m a ama |
---|---|
matchkey_str |
article:20734433:2019----::oeatnpriuaeatrocnrtouigiernnnierprahs |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QC |
publishDate |
2019 |
allfields |
10.3390/atmos10110667 doi (DE-627)DOAJ033650268 (DE-599)DOAJ48ae32f3ae8b4382b0d2c9e09798757c DE-627 ger DE-627 rakwb eng QC851-999 Samsuri Abdullah verfasserin aut Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia. particulate matter forecasting air quality malaysia Meteorology. Climatology Marzuki Ismail verfasserin aut Ali Najah Ahmed verfasserin aut Ahmad Makmom Abdullah verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 11, p 667 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:11, p 667 https://doi.org/10.3390/atmos10110667 kostenfrei https://doaj.org/article/48ae32f3ae8b4382b0d2c9e09798757c kostenfrei https://www.mdpi.com/2073-4433/10/11/667 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11, p 667 |
spelling |
10.3390/atmos10110667 doi (DE-627)DOAJ033650268 (DE-599)DOAJ48ae32f3ae8b4382b0d2c9e09798757c DE-627 ger DE-627 rakwb eng QC851-999 Samsuri Abdullah verfasserin aut Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia. particulate matter forecasting air quality malaysia Meteorology. Climatology Marzuki Ismail verfasserin aut Ali Najah Ahmed verfasserin aut Ahmad Makmom Abdullah verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 11, p 667 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:11, p 667 https://doi.org/10.3390/atmos10110667 kostenfrei https://doaj.org/article/48ae32f3ae8b4382b0d2c9e09798757c kostenfrei https://www.mdpi.com/2073-4433/10/11/667 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11, p 667 |
allfields_unstemmed |
10.3390/atmos10110667 doi (DE-627)DOAJ033650268 (DE-599)DOAJ48ae32f3ae8b4382b0d2c9e09798757c DE-627 ger DE-627 rakwb eng QC851-999 Samsuri Abdullah verfasserin aut Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia. particulate matter forecasting air quality malaysia Meteorology. Climatology Marzuki Ismail verfasserin aut Ali Najah Ahmed verfasserin aut Ahmad Makmom Abdullah verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 11, p 667 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:11, p 667 https://doi.org/10.3390/atmos10110667 kostenfrei https://doaj.org/article/48ae32f3ae8b4382b0d2c9e09798757c kostenfrei https://www.mdpi.com/2073-4433/10/11/667 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11, p 667 |
allfieldsGer |
10.3390/atmos10110667 doi (DE-627)DOAJ033650268 (DE-599)DOAJ48ae32f3ae8b4382b0d2c9e09798757c DE-627 ger DE-627 rakwb eng QC851-999 Samsuri Abdullah verfasserin aut Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia. particulate matter forecasting air quality malaysia Meteorology. Climatology Marzuki Ismail verfasserin aut Ali Najah Ahmed verfasserin aut Ahmad Makmom Abdullah verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 11, p 667 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:11, p 667 https://doi.org/10.3390/atmos10110667 kostenfrei https://doaj.org/article/48ae32f3ae8b4382b0d2c9e09798757c kostenfrei https://www.mdpi.com/2073-4433/10/11/667 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11, p 667 |
allfieldsSound |
10.3390/atmos10110667 doi (DE-627)DOAJ033650268 (DE-599)DOAJ48ae32f3ae8b4382b0d2c9e09798757c DE-627 ger DE-627 rakwb eng QC851-999 Samsuri Abdullah verfasserin aut Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia. particulate matter forecasting air quality malaysia Meteorology. Climatology Marzuki Ismail verfasserin aut Ali Najah Ahmed verfasserin aut Ahmad Makmom Abdullah verfasserin aut In Atmosphere MDPI AG, 2011 10(2019), 11, p 667 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:10 year:2019 number:11, p 667 https://doi.org/10.3390/atmos10110667 kostenfrei https://doaj.org/article/48ae32f3ae8b4382b0d2c9e09798757c kostenfrei https://www.mdpi.com/2073-4433/10/11/667 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 11, p 667 |
language |
English |
source |
In Atmosphere 10(2019), 11, p 667 volume:10 year:2019 number:11, p 667 |
sourceStr |
In Atmosphere 10(2019), 11, p 667 volume:10 year:2019 number:11, p 667 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
particulate matter forecasting air quality malaysia Meteorology. Climatology |
isfreeaccess_bool |
true |
container_title |
Atmosphere |
authorswithroles_txt_mv |
Samsuri Abdullah @@aut@@ Marzuki Ismail @@aut@@ Ali Najah Ahmed @@aut@@ Ahmad Makmom Abdullah @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
657584010 |
id |
DOAJ033650268 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033650268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307181634.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos10110667</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033650268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ48ae32f3ae8b4382b0d2c9e09798757c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Samsuri Abdullah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particulate matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">malaysia</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marzuki Ismail</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Najah Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ahmad Makmom Abdullah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">10(2019), 11, p 667</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:11, p 667</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos10110667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/48ae32f3ae8b4382b0d2c9e09798757c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/10/11/667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">11, p 667</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Samsuri Abdullah |
spellingShingle |
Samsuri Abdullah misc QC851-999 misc particulate matter misc forecasting misc air quality misc malaysia misc Meteorology. Climatology Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support |
authorStr |
Samsuri Abdullah |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657584010 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC851-999 |
illustrated |
Not Illustrated |
issn |
20734433 |
topic_title |
QC851-999 Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support particulate matter forecasting air quality malaysia |
topic |
misc QC851-999 misc particulate matter misc forecasting misc air quality misc malaysia misc Meteorology. Climatology |
topic_unstemmed |
misc QC851-999 misc particulate matter misc forecasting misc air quality misc malaysia misc Meteorology. Climatology |
topic_browse |
misc QC851-999 misc particulate matter misc forecasting misc air quality misc malaysia misc Meteorology. Climatology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmosphere |
hierarchy_parent_id |
657584010 |
hierarchy_top_title |
Atmosphere |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657584010 (DE-600)2605928-9 |
title |
Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support |
ctrlnum |
(DE-627)DOAJ033650268 (DE-599)DOAJ48ae32f3ae8b4382b0d2c9e09798757c |
title_full |
Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support |
author_sort |
Samsuri Abdullah |
journal |
Atmosphere |
journalStr |
Atmosphere |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Samsuri Abdullah Marzuki Ismail Ali Najah Ahmed Ahmad Makmom Abdullah |
container_volume |
10 |
class |
QC851-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Samsuri Abdullah |
doi_str_mv |
10.3390/atmos10110667 |
author2-role |
verfasserin |
title_sort |
forecasting particulate matter concentration using linear and non-linear approaches for air quality decision support |
callnumber |
QC851-999 |
title_auth |
Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support |
abstract |
Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia. |
abstractGer |
Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia. |
abstract_unstemmed |
Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 667 |
title_short |
Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support |
url |
https://doi.org/10.3390/atmos10110667 https://doaj.org/article/48ae32f3ae8b4382b0d2c9e09798757c https://www.mdpi.com/2073-4433/10/11/667 https://doaj.org/toc/2073-4433 |
remote_bool |
true |
author2 |
Marzuki Ismail Ali Najah Ahmed Ahmad Makmom Abdullah |
author2Str |
Marzuki Ismail Ali Najah Ahmed Ahmad Makmom Abdullah |
ppnlink |
657584010 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/atmos10110667 |
callnumber-a |
QC851-999 |
up_date |
2024-07-03T18:56:13.589Z |
_version_ |
1803585295314059264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033650268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307181634.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos10110667</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033650268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ48ae32f3ae8b4382b0d2c9e09798757c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Samsuri Abdullah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forecasting Particulate Matter Concentration Using Linear and Non-Linear Approaches for Air Quality Decision Support</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Air quality status on the East Coast of Peninsular Malaysia is dominated by Particulate Matter (PM<sub<10</sub<) throughout the years. Studies have affirmed that PM<sub<10</sub< influence human health and the environment. Therefore, precise forecasting algorithms are urgently needed to determine the PM<sub<10</sub< status for mitigation plan and early warning purposes. This study investigates the forecasting performance of a linear (Multiple Linear Regression) and two non-linear models (Multi-Layer Perceptron and Radial Basis Function) utilizing meteorological and gaseous pollutants variables as input parameters from the year 2000−2014 at four sites with different surrounding activities of urban, sub-urban and rural areas. Non-linear model (Radial Basis Function) outperforms the linear model with the error reduced by 78.9% (urban), 32.1% (sub-urban) and 39.8% (rural). Association between PM<sub<10</sub< and its contributing factors are complex and non-linear in nature, best captured by an Artificial Neural Network, which generates more accurate PM<sub<10</sub< compared to the linear model. The results are robust enough for precise next day forecasting of PM<sub<10</sub< concentration on the East Coast of Peninsular Malaysia.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particulate matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">malaysia</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marzuki Ismail</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Najah Ahmed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ahmad Makmom Abdullah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">10(2019), 11, p 667</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:11, p 667</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos10110667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/48ae32f3ae8b4382b0d2c9e09798757c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/10/11/667</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">11, p 667</subfield></datafield></record></collection>
|
score |
7.400646 |