DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS
Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stag...
Ausführliche Beschreibung
Autor*in: |
Victor Rueda Ayala [verfasserIn] Seshadri Kunapuli [verfasserIn] Javier Maiguashca [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Spanisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecuador es Calidad - Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), 2020, 2(2015), 1 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2015 ; number:1 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.36331/revista.v2i1.5 |
---|
Katalog-ID: |
DOAJ033774617 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ033774617 | ||
003 | DE-627 | ||
005 | 20230307182407.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2015 xx |||||o 00| ||spa c | ||
024 | 7 | |a 10.36331/revista.v2i1.5 |2 doi | |
035 | |a (DE-627)DOAJ033774617 | ||
035 | |a (DE-599)DOAJ12f4981d6aca40dbb21ef4af8c052e03 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a spa | ||
050 | 0 | |a S1-972 | |
050 | 0 | |a SF1-1100 | |
100 | 0 | |a Victor Rueda Ayala |e verfasserin |4 aut | |
245 | 1 | 0 | |a DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production. | ||
650 | 4 | |a aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression | |
653 | 0 | |a Agriculture (General) | |
653 | 0 | |a Animal culture | |
700 | 0 | |a Seshadri Kunapuli |e verfasserin |4 aut | |
700 | 0 | |a Javier Maiguashca |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecuador es Calidad |d Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), 2020 |g 2(2015), 1 |w (DE-627)1702904059 |x 25287850 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2015 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.36331/revista.v2i1.5 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/12f4981d6aca40dbb21ef4af8c052e03 |z kostenfrei |
856 | 4 | 0 | |u https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/5 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1390-9223 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2528-7850 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2015 |e 1 |
author_variant |
v r a vra s k sk j m jm |
---|---|
matchkey_str |
article:25287850:2015----::eeomnoyedrdcinoesnhmierpsnsetadtfrrcs |
hierarchy_sort_str |
2015 |
callnumber-subject-code |
S |
publishDate |
2015 |
allfields |
10.36331/revista.v2i1.5 doi (DE-627)DOAJ033774617 (DE-599)DOAJ12f4981d6aca40dbb21ef4af8c052e03 DE-627 ger DE-627 rakwb spa S1-972 SF1-1100 Victor Rueda Ayala verfasserin aut DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production. aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression Agriculture (General) Animal culture Seshadri Kunapuli verfasserin aut Javier Maiguashca verfasserin aut In Ecuador es Calidad Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), 2020 2(2015), 1 (DE-627)1702904059 25287850 nnns volume:2 year:2015 number:1 https://doi.org/10.36331/revista.v2i1.5 kostenfrei https://doaj.org/article/12f4981d6aca40dbb21ef4af8c052e03 kostenfrei https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/5 kostenfrei https://doaj.org/toc/1390-9223 Journal toc kostenfrei https://doaj.org/toc/2528-7850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
spelling |
10.36331/revista.v2i1.5 doi (DE-627)DOAJ033774617 (DE-599)DOAJ12f4981d6aca40dbb21ef4af8c052e03 DE-627 ger DE-627 rakwb spa S1-972 SF1-1100 Victor Rueda Ayala verfasserin aut DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production. aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression Agriculture (General) Animal culture Seshadri Kunapuli verfasserin aut Javier Maiguashca verfasserin aut In Ecuador es Calidad Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), 2020 2(2015), 1 (DE-627)1702904059 25287850 nnns volume:2 year:2015 number:1 https://doi.org/10.36331/revista.v2i1.5 kostenfrei https://doaj.org/article/12f4981d6aca40dbb21ef4af8c052e03 kostenfrei https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/5 kostenfrei https://doaj.org/toc/1390-9223 Journal toc kostenfrei https://doaj.org/toc/2528-7850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
allfields_unstemmed |
10.36331/revista.v2i1.5 doi (DE-627)DOAJ033774617 (DE-599)DOAJ12f4981d6aca40dbb21ef4af8c052e03 DE-627 ger DE-627 rakwb spa S1-972 SF1-1100 Victor Rueda Ayala verfasserin aut DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production. aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression Agriculture (General) Animal culture Seshadri Kunapuli verfasserin aut Javier Maiguashca verfasserin aut In Ecuador es Calidad Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), 2020 2(2015), 1 (DE-627)1702904059 25287850 nnns volume:2 year:2015 number:1 https://doi.org/10.36331/revista.v2i1.5 kostenfrei https://doaj.org/article/12f4981d6aca40dbb21ef4af8c052e03 kostenfrei https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/5 kostenfrei https://doaj.org/toc/1390-9223 Journal toc kostenfrei https://doaj.org/toc/2528-7850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
allfieldsGer |
10.36331/revista.v2i1.5 doi (DE-627)DOAJ033774617 (DE-599)DOAJ12f4981d6aca40dbb21ef4af8c052e03 DE-627 ger DE-627 rakwb spa S1-972 SF1-1100 Victor Rueda Ayala verfasserin aut DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production. aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression Agriculture (General) Animal culture Seshadri Kunapuli verfasserin aut Javier Maiguashca verfasserin aut In Ecuador es Calidad Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), 2020 2(2015), 1 (DE-627)1702904059 25287850 nnns volume:2 year:2015 number:1 https://doi.org/10.36331/revista.v2i1.5 kostenfrei https://doaj.org/article/12f4981d6aca40dbb21ef4af8c052e03 kostenfrei https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/5 kostenfrei https://doaj.org/toc/1390-9223 Journal toc kostenfrei https://doaj.org/toc/2528-7850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
allfieldsSound |
10.36331/revista.v2i1.5 doi (DE-627)DOAJ033774617 (DE-599)DOAJ12f4981d6aca40dbb21ef4af8c052e03 DE-627 ger DE-627 rakwb spa S1-972 SF1-1100 Victor Rueda Ayala verfasserin aut DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production. aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression Agriculture (General) Animal culture Seshadri Kunapuli verfasserin aut Javier Maiguashca verfasserin aut In Ecuador es Calidad Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), 2020 2(2015), 1 (DE-627)1702904059 25287850 nnns volume:2 year:2015 number:1 https://doi.org/10.36331/revista.v2i1.5 kostenfrei https://doaj.org/article/12f4981d6aca40dbb21ef4af8c052e03 kostenfrei https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/5 kostenfrei https://doaj.org/toc/1390-9223 Journal toc kostenfrei https://doaj.org/toc/2528-7850 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
language |
Spanish |
source |
In Ecuador es Calidad 2(2015), 1 volume:2 year:2015 number:1 |
sourceStr |
In Ecuador es Calidad 2(2015), 1 volume:2 year:2015 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression Agriculture (General) Animal culture |
isfreeaccess_bool |
true |
container_title |
Ecuador es Calidad |
authorswithroles_txt_mv |
Victor Rueda Ayala @@aut@@ Seshadri Kunapuli @@aut@@ Javier Maiguashca @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
1702904059 |
id |
DOAJ033774617 |
language_de |
spanisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033774617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307182407.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2015 xx |||||o 00| ||spa c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.36331/revista.v2i1.5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033774617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12f4981d6aca40dbb21ef4af8c052e03</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">spa</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF1-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Victor Rueda Ayala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Animal culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seshadri Kunapuli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Javier Maiguashca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecuador es Calidad</subfield><subfield code="d">Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), 2020</subfield><subfield code="g">2(2015), 1</subfield><subfield code="w">(DE-627)1702904059</subfield><subfield code="x">25287850</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.36331/revista.v2i1.5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12f4981d6aca40dbb21ef4af8c052e03</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1390-9223</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2528-7850</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Victor Rueda Ayala |
spellingShingle |
Victor Rueda Ayala misc S1-972 misc SF1-1100 misc aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression misc Agriculture (General) misc Animal culture DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS |
authorStr |
Victor Rueda Ayala |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1702904059 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
S1-972 |
illustrated |
Not Illustrated |
issn |
25287850 |
topic_title |
S1-972 SF1-1100 DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression |
topic |
misc S1-972 misc SF1-1100 misc aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression misc Agriculture (General) misc Animal culture |
topic_unstemmed |
misc S1-972 misc SF1-1100 misc aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression misc Agriculture (General) misc Animal culture |
topic_browse |
misc S1-972 misc SF1-1100 misc aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression misc Agriculture (General) misc Animal culture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecuador es Calidad |
hierarchy_parent_id |
1702904059 |
hierarchy_top_title |
Ecuador es Calidad |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1702904059 |
title |
DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS |
ctrlnum |
(DE-627)DOAJ033774617 (DE-599)DOAJ12f4981d6aca40dbb21ef4af8c052e03 |
title_full |
DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS |
author_sort |
Victor Rueda Ayala |
journal |
Ecuador es Calidad |
journalStr |
Ecuador es Calidad |
callnumber-first-code |
S |
lang_code |
spa |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Victor Rueda Ayala Seshadri Kunapuli Javier Maiguashca |
container_volume |
2 |
class |
S1-972 SF1-1100 |
format_se |
Elektronische Aufsätze |
author-letter |
Victor Rueda Ayala |
doi_str_mv |
10.36331/revista.v2i1.5 |
author2-role |
verfasserin |
title_sort |
development of yield prediction models in the maize crop using spectral data for precision agriculture applications |
callnumber |
S1-972 |
title_auth |
DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS |
abstract |
Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production. |
abstractGer |
Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production. |
abstract_unstemmed |
Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS |
url |
https://doi.org/10.36331/revista.v2i1.5 https://doaj.org/article/12f4981d6aca40dbb21ef4af8c052e03 https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/5 https://doaj.org/toc/1390-9223 https://doaj.org/toc/2528-7850 |
remote_bool |
true |
author2 |
Seshadri Kunapuli Javier Maiguashca |
author2Str |
Seshadri Kunapuli Javier Maiguashca |
ppnlink |
1702904059 |
callnumber-subject |
S - General Agriculture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.36331/revista.v2i1.5 |
callnumber-a |
S1-972 |
up_date |
2024-07-03T19:35:47.902Z |
_version_ |
1803587784969027584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ033774617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307182407.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2015 xx |||||o 00| ||spa c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.36331/revista.v2i1.5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ033774617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12f4981d6aca40dbb21ef4af8c052e03</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">spa</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF1-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Victor Rueda Ayala</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DEVELOPMENT OF YIELD PREDICTION MODELS IN THE MAIZE CROP USING SPECTRAL DATA FOR PRECISION AGRICULTURE APPLICATIONS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Machine learning techniques were applied with statistical tools such as linear, logistic and multinomial regression, to work out predictive algorithms for yield estimation. Spectroradiometer readings were collected throughout the main maiz producing provinces of Ecuador, at two crop development stages. A model using six degree polynomial regression is recommended for acceptable yield prediction. This model could contribute to decide about imports strategies and avoid the overlapping with the national production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aprendizaje automático; ndvi; sensoramiento proximal; sensoramiento remoto; regresión; machine learning; ndvi; proximal sensing; remote sensing; regression</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Animal culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seshadri Kunapuli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Javier Maiguashca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecuador es Calidad</subfield><subfield code="d">Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), 2020</subfield><subfield code="g">2(2015), 1</subfield><subfield code="w">(DE-627)1702904059</subfield><subfield code="x">25287850</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.36331/revista.v2i1.5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12f4981d6aca40dbb21ef4af8c052e03</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1390-9223</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2528-7850</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.400505 |