Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training
Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficien...
Ausführliche Beschreibung
Autor*in: |
Wei-Ru Lu [verfasserIn] Wen-Tse Yang [verfasserIn] Justin Chu [verfasserIn] Tung-Han Hsieh [verfasserIn] Fu-Liang Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 12(2022), 1, Seite 12 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1 ; pages:12 |
Links: |
---|
DOI / URN: |
10.1038/s41598-022-10360-3 |
---|
Katalog-ID: |
DOAJ034025006 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ034025006 | ||
003 | DE-627 | ||
005 | 20230307184023.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-022-10360-3 |2 doi | |
035 | |a (DE-627)DOAJ034025006 | ||
035 | |a (DE-599)DOAJe071fc3634ce4d638af408b6c06458d2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Wei-Ru Lu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Wen-Tse Yang |e verfasserin |4 aut | |
700 | 0 | |a Justin Chu |e verfasserin |4 aut | |
700 | 0 | |a Tung-Han Hsieh |e verfasserin |4 aut | |
700 | 0 | |a Fu-Liang Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 12(2022), 1, Seite 12 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1 |g pages:12 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-10360-3 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e071fc3634ce4d638af408b6c06458d2 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-10360-3 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1 |h 12 |
author_variant |
w r l wrl w t y wty j c jc t h h thh f l y fly |
---|---|
matchkey_str |
article:20452322:2022----::eutolannfrrcsnnnaieesrmnsfloguoeihdzn |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1038/s41598-022-10360-3 doi (DE-627)DOAJ034025006 (DE-599)DOAJe071fc3634ce4d638af408b6c06458d2 DE-627 ger DE-627 rakwb eng Wei-Ru Lu verfasserin aut Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable. Medicine R Science Q Wen-Tse Yang verfasserin aut Justin Chu verfasserin aut Tung-Han Hsieh verfasserin aut Fu-Liang Yang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 12 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:12 https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/article/e071fc3634ce4d638af408b6c06458d2 kostenfrei https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 |
spelling |
10.1038/s41598-022-10360-3 doi (DE-627)DOAJ034025006 (DE-599)DOAJe071fc3634ce4d638af408b6c06458d2 DE-627 ger DE-627 rakwb eng Wei-Ru Lu verfasserin aut Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable. Medicine R Science Q Wen-Tse Yang verfasserin aut Justin Chu verfasserin aut Tung-Han Hsieh verfasserin aut Fu-Liang Yang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 12 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:12 https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/article/e071fc3634ce4d638af408b6c06458d2 kostenfrei https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 |
allfields_unstemmed |
10.1038/s41598-022-10360-3 doi (DE-627)DOAJ034025006 (DE-599)DOAJe071fc3634ce4d638af408b6c06458d2 DE-627 ger DE-627 rakwb eng Wei-Ru Lu verfasserin aut Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable. Medicine R Science Q Wen-Tse Yang verfasserin aut Justin Chu verfasserin aut Tung-Han Hsieh verfasserin aut Fu-Liang Yang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 12 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:12 https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/article/e071fc3634ce4d638af408b6c06458d2 kostenfrei https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 |
allfieldsGer |
10.1038/s41598-022-10360-3 doi (DE-627)DOAJ034025006 (DE-599)DOAJe071fc3634ce4d638af408b6c06458d2 DE-627 ger DE-627 rakwb eng Wei-Ru Lu verfasserin aut Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable. Medicine R Science Q Wen-Tse Yang verfasserin aut Justin Chu verfasserin aut Tung-Han Hsieh verfasserin aut Fu-Liang Yang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 12 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:12 https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/article/e071fc3634ce4d638af408b6c06458d2 kostenfrei https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 |
allfieldsSound |
10.1038/s41598-022-10360-3 doi (DE-627)DOAJ034025006 (DE-599)DOAJe071fc3634ce4d638af408b6c06458d2 DE-627 ger DE-627 rakwb eng Wei-Ru Lu verfasserin aut Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable. Medicine R Science Q Wen-Tse Yang verfasserin aut Justin Chu verfasserin aut Tung-Han Hsieh verfasserin aut Fu-Liang Yang verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 12 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:12 https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/article/e071fc3634ce4d638af408b6c06458d2 kostenfrei https://doi.org/10.1038/s41598-022-10360-3 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 12 |
language |
English |
source |
In Scientific Reports 12(2022), 1, Seite 12 volume:12 year:2022 number:1 pages:12 |
sourceStr |
In Scientific Reports 12(2022), 1, Seite 12 volume:12 year:2022 number:1 pages:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Wei-Ru Lu @@aut@@ Wen-Tse Yang @@aut@@ Justin Chu @@aut@@ Tung-Han Hsieh @@aut@@ Fu-Liang Yang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ034025006 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034025006</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307184023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-10360-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034025006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe071fc3634ce4d638af408b6c06458d2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei-Ru Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wen-Tse Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Justin Chu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tung-Han Hsieh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fu-Liang Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 12</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-10360-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e071fc3634ce4d638af408b6c06458d2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-10360-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
author |
Wei-Ru Lu |
spellingShingle |
Wei-Ru Lu misc Medicine misc R misc Science misc Q Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training |
authorStr |
Wei-Ru Lu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training |
ctrlnum |
(DE-627)DOAJ034025006 (DE-599)DOAJe071fc3634ce4d638af408b6c06458d2 |
title_full |
Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training |
author_sort |
Wei-Ru Lu |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
12 |
author_browse |
Wei-Ru Lu Wen-Tse Yang Justin Chu Tung-Han Hsieh Fu-Liang Yang |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Wei-Ru Lu |
doi_str_mv |
10.1038/s41598-022-10360-3 |
author2-role |
verfasserin |
title_sort |
deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training |
title_auth |
Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training |
abstract |
Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable. |
abstractGer |
Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable. |
abstract_unstemmed |
Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training |
url |
https://doi.org/10.1038/s41598-022-10360-3 https://doaj.org/article/e071fc3634ce4d638af408b6c06458d2 https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
Wen-Tse Yang Justin Chu Tung-Han Hsieh Fu-Liang Yang |
author2Str |
Wen-Tse Yang Justin Chu Tung-Han Hsieh Fu-Liang Yang |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-022-10360-3 |
up_date |
2024-07-03T20:59:09.078Z |
_version_ |
1803593029079007232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034025006</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307184023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-10360-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034025006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe071fc3634ce4d638af408b6c06458d2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei-Ru Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deduction learning for precise noninvasive measurements of blood glucose with a dozen rounds of data for model training</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient ( $${R}_{P}$$ R P ) of 0.81, an accuracy score ( $${R}_{A}$$ R A ) of 93.5, a root mean squared error of 13.93 mg/dl, a mean absolute error of 12.07 mg/dl, and 100% predictions in zone A of CEG. The nonparametric Wilcoxon paired test on $${R}_{A}$$ R A for DL versus IL revealed near significant difference with p-value 0.06. These significant improvements indicate that a very simple and precise noninvasive measurement of blood glucose concentration is achievable.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wen-Tse Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Justin Chu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tung-Han Hsieh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fu-Liang Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 12</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-10360-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e071fc3634ce4d638af408b6c06458d2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-10360-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">12</subfield></datafield></record></collection>
|
score |
7.4017067 |