A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution
The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China....
Ausführliche Beschreibung
Autor*in: |
Yi Chen [verfasserIn] Xueyuan Bai [verfasserIn] Tao Yang [verfasserIn] Lifang Zou [verfasserIn] Zhisheng Liu [verfasserIn] Zhongqiang Wang [verfasserIn] Chunguang He [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Water - MDPI AG, 2010, 11(2019), 5, p 972 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2019 ; number:5, p 972 |
Links: |
---|
DOI / URN: |
10.3390/w11050972 |
---|
Katalog-ID: |
DOAJ034030530 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ034030530 | ||
003 | DE-627 | ||
005 | 20230502064542.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/w11050972 |2 doi | |
035 | |a (DE-627)DOAJ034030530 | ||
035 | |a (DE-599)DOAJbe98fe1da9264d3a8dce30a1faeb7395 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TC1-978 | |
050 | 0 | |a TD201-500 | |
100 | 0 | |a Yi Chen |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas. | ||
650 | 4 | |a pond system | |
650 | 4 | |a hand pumps | |
650 | 4 | |a dredged sediment | |
650 | 4 | |a shrub willow | |
650 | 4 | |a nutrient removal | |
653 | 0 | |a Hydraulic engineering | |
653 | 0 | |a Water supply for domestic and industrial purposes | |
700 | 0 | |a Xueyuan Bai |e verfasserin |4 aut | |
700 | 0 | |a Tao Yang |e verfasserin |4 aut | |
700 | 0 | |a Lifang Zou |e verfasserin |4 aut | |
700 | 0 | |a Zhisheng Liu |e verfasserin |4 aut | |
700 | 0 | |a Zhongqiang Wang |e verfasserin |4 aut | |
700 | 0 | |a Chunguang He |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Water |d MDPI AG, 2010 |g 11(2019), 5, p 972 |w (DE-627)611729008 |w (DE-600)2521238-2 |x 20734441 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2019 |g number:5, p 972 |
856 | 4 | 0 | |u https://doi.org/10.3390/w11050972 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/be98fe1da9264d3a8dce30a1faeb7395 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4441/11/5/972 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4441 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2019 |e 5, p 972 |
author_variant |
y c yc x b xb t y ty l z lz z l zl z w zw c h ch |
---|---|
matchkey_str |
article:20734441:2019----::peiiaytdoaoewtrramnpndsguigrdesdmnsrbilwnrccigadu |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TC |
publishDate |
2019 |
allfields |
10.3390/w11050972 doi (DE-627)DOAJ034030530 (DE-599)DOAJbe98fe1da9264d3a8dce30a1faeb7395 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Yi Chen verfasserin aut A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas. pond system hand pumps dredged sediment shrub willow nutrient removal Hydraulic engineering Water supply for domestic and industrial purposes Xueyuan Bai verfasserin aut Tao Yang verfasserin aut Lifang Zou verfasserin aut Zhisheng Liu verfasserin aut Zhongqiang Wang verfasserin aut Chunguang He verfasserin aut In Water MDPI AG, 2010 11(2019), 5, p 972 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:11 year:2019 number:5, p 972 https://doi.org/10.3390/w11050972 kostenfrei https://doaj.org/article/be98fe1da9264d3a8dce30a1faeb7395 kostenfrei https://www.mdpi.com/2073-4441/11/5/972 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 5, p 972 |
spelling |
10.3390/w11050972 doi (DE-627)DOAJ034030530 (DE-599)DOAJbe98fe1da9264d3a8dce30a1faeb7395 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Yi Chen verfasserin aut A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas. pond system hand pumps dredged sediment shrub willow nutrient removal Hydraulic engineering Water supply for domestic and industrial purposes Xueyuan Bai verfasserin aut Tao Yang verfasserin aut Lifang Zou verfasserin aut Zhisheng Liu verfasserin aut Zhongqiang Wang verfasserin aut Chunguang He verfasserin aut In Water MDPI AG, 2010 11(2019), 5, p 972 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:11 year:2019 number:5, p 972 https://doi.org/10.3390/w11050972 kostenfrei https://doaj.org/article/be98fe1da9264d3a8dce30a1faeb7395 kostenfrei https://www.mdpi.com/2073-4441/11/5/972 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 5, p 972 |
allfields_unstemmed |
10.3390/w11050972 doi (DE-627)DOAJ034030530 (DE-599)DOAJbe98fe1da9264d3a8dce30a1faeb7395 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Yi Chen verfasserin aut A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas. pond system hand pumps dredged sediment shrub willow nutrient removal Hydraulic engineering Water supply for domestic and industrial purposes Xueyuan Bai verfasserin aut Tao Yang verfasserin aut Lifang Zou verfasserin aut Zhisheng Liu verfasserin aut Zhongqiang Wang verfasserin aut Chunguang He verfasserin aut In Water MDPI AG, 2010 11(2019), 5, p 972 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:11 year:2019 number:5, p 972 https://doi.org/10.3390/w11050972 kostenfrei https://doaj.org/article/be98fe1da9264d3a8dce30a1faeb7395 kostenfrei https://www.mdpi.com/2073-4441/11/5/972 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 5, p 972 |
allfieldsGer |
10.3390/w11050972 doi (DE-627)DOAJ034030530 (DE-599)DOAJbe98fe1da9264d3a8dce30a1faeb7395 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Yi Chen verfasserin aut A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas. pond system hand pumps dredged sediment shrub willow nutrient removal Hydraulic engineering Water supply for domestic and industrial purposes Xueyuan Bai verfasserin aut Tao Yang verfasserin aut Lifang Zou verfasserin aut Zhisheng Liu verfasserin aut Zhongqiang Wang verfasserin aut Chunguang He verfasserin aut In Water MDPI AG, 2010 11(2019), 5, p 972 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:11 year:2019 number:5, p 972 https://doi.org/10.3390/w11050972 kostenfrei https://doaj.org/article/be98fe1da9264d3a8dce30a1faeb7395 kostenfrei https://www.mdpi.com/2073-4441/11/5/972 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 5, p 972 |
allfieldsSound |
10.3390/w11050972 doi (DE-627)DOAJ034030530 (DE-599)DOAJbe98fe1da9264d3a8dce30a1faeb7395 DE-627 ger DE-627 rakwb eng TC1-978 TD201-500 Yi Chen verfasserin aut A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas. pond system hand pumps dredged sediment shrub willow nutrient removal Hydraulic engineering Water supply for domestic and industrial purposes Xueyuan Bai verfasserin aut Tao Yang verfasserin aut Lifang Zou verfasserin aut Zhisheng Liu verfasserin aut Zhongqiang Wang verfasserin aut Chunguang He verfasserin aut In Water MDPI AG, 2010 11(2019), 5, p 972 (DE-627)611729008 (DE-600)2521238-2 20734441 nnns volume:11 year:2019 number:5, p 972 https://doi.org/10.3390/w11050972 kostenfrei https://doaj.org/article/be98fe1da9264d3a8dce30a1faeb7395 kostenfrei https://www.mdpi.com/2073-4441/11/5/972 kostenfrei https://doaj.org/toc/2073-4441 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 11 2019 5, p 972 |
language |
English |
source |
In Water 11(2019), 5, p 972 volume:11 year:2019 number:5, p 972 |
sourceStr |
In Water 11(2019), 5, p 972 volume:11 year:2019 number:5, p 972 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
pond system hand pumps dredged sediment shrub willow nutrient removal Hydraulic engineering Water supply for domestic and industrial purposes |
isfreeaccess_bool |
true |
container_title |
Water |
authorswithroles_txt_mv |
Yi Chen @@aut@@ Xueyuan Bai @@aut@@ Tao Yang @@aut@@ Lifang Zou @@aut@@ Zhisheng Liu @@aut@@ Zhongqiang Wang @@aut@@ Chunguang He @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
611729008 |
id |
DOAJ034030530 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034030530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502064542.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w11050972</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034030530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbe98fe1da9264d3a8dce30a1faeb7395</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pond system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hand pumps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dredged sediment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shrub willow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nutrient removal</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xueyuan Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lifang Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhisheng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongqiang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunguang He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">11(2019), 5, p 972</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5, p 972</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w11050972</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/be98fe1da9264d3a8dce30a1faeb7395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/11/5/972</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">5, p 972</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yi Chen |
spellingShingle |
Yi Chen misc TC1-978 misc TD201-500 misc pond system misc hand pumps misc dredged sediment misc shrub willow misc nutrient removal misc Hydraulic engineering misc Water supply for domestic and industrial purposes A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution |
authorStr |
Yi Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)611729008 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TC1-978 |
illustrated |
Not Illustrated |
issn |
20734441 |
topic_title |
TC1-978 TD201-500 A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution pond system hand pumps dredged sediment shrub willow nutrient removal |
topic |
misc TC1-978 misc TD201-500 misc pond system misc hand pumps misc dredged sediment misc shrub willow misc nutrient removal misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_unstemmed |
misc TC1-978 misc TD201-500 misc pond system misc hand pumps misc dredged sediment misc shrub willow misc nutrient removal misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
topic_browse |
misc TC1-978 misc TD201-500 misc pond system misc hand pumps misc dredged sediment misc shrub willow misc nutrient removal misc Hydraulic engineering misc Water supply for domestic and industrial purposes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water |
hierarchy_parent_id |
611729008 |
hierarchy_top_title |
Water |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)611729008 (DE-600)2521238-2 |
title |
A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution |
ctrlnum |
(DE-627)DOAJ034030530 (DE-599)DOAJbe98fe1da9264d3a8dce30a1faeb7395 |
title_full |
A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution |
author_sort |
Yi Chen |
journal |
Water |
journalStr |
Water |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Yi Chen Xueyuan Bai Tao Yang Lifang Zou Zhisheng Liu Zhongqiang Wang Chunguang He |
container_volume |
11 |
class |
TC1-978 TD201-500 |
format_se |
Elektronische Aufsätze |
author-letter |
Yi Chen |
doi_str_mv |
10.3390/w11050972 |
author2-role |
verfasserin |
title_sort |
preliminary study on a novel water treatment pond design using dredged sediment, shrub willow and recycling hand pumps for the restoration of water pollution |
callnumber |
TC1-978 |
title_auth |
A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution |
abstract |
The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas. |
abstractGer |
The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas. |
abstract_unstemmed |
The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 972 |
title_short |
A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution |
url |
https://doi.org/10.3390/w11050972 https://doaj.org/article/be98fe1da9264d3a8dce30a1faeb7395 https://www.mdpi.com/2073-4441/11/5/972 https://doaj.org/toc/2073-4441 |
remote_bool |
true |
author2 |
Xueyuan Bai Tao Yang Lifang Zou Zhisheng Liu Zhongqiang Wang Chunguang He |
author2Str |
Xueyuan Bai Tao Yang Lifang Zou Zhisheng Liu Zhongqiang Wang Chunguang He |
ppnlink |
611729008 |
callnumber-subject |
TC - Hydraulic and Ocean Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/w11050972 |
callnumber-a |
TC1-978 |
up_date |
2024-07-03T21:01:07.036Z |
_version_ |
1803593152765886464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034030530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502064542.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/w11050972</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034030530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbe98fe1da9264d3a8dce30a1faeb7395</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1-978</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD201-500</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Preliminary Study on A Novel Water Treatment Pond Design Using Dredged Sediment, Shrub Willow and Recycling Hand Pumps for the Restoration of Water Pollution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The treatment of polluted water and sediment often costs too much and has little benefit. In this study, we proposed a novel design using dredged sediment, shrub willow (<i<Salix spp</i<.) and recirculating hand pumps for the restoration of polluted river water in Changchun city, China. Sediment was filled as a matrix for plant growth, shrub willow was transplanted for the absorption of nutrients, and ten hand-pumped water wells were built for recycling the polluted water. During the 5-month experimental period, the shrub willow growth and nutrient contents, sediment nutrient concentration and water quality were measured. The results showed that this pond system could effectively decrease the sediment pollutant levels, and its removal efficiencies of organic matter (OM), total nitrogen (TN) and total phosphorus (TP) could respectively reach as high as 11%, 10% and 26%. The dissolved oxygen (DO) content increased by more than 90% in August, and the chemical oxygen demand (COD) and total nitrogen (TN) content decreased by 44.93% and 19.82%, respectively. This means that the treatment pond could efficiently work toward the purification of polluted river water. The benefits and feasibility of this system application were also analyzed, and we found that it could be widely used for the treatment of polluted water and sediment in urban areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pond system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hand pumps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dredged sediment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shrub willow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nutrient removal</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Water supply for domestic and industrial purposes</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xueyuan Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lifang Zou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhisheng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongqiang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunguang He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">11(2019), 5, p 972</subfield><subfield code="w">(DE-627)611729008</subfield><subfield code="w">(DE-600)2521238-2</subfield><subfield code="x">20734441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5, p 972</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/w11050972</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/be98fe1da9264d3a8dce30a1faeb7395</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4441/11/5/972</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4441</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">5, p 972</subfield></datafield></record></collection>
|
score |
7.4010277 |