Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes
Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i...
Ausführliche Beschreibung
Autor*in: |
Zhaobin Li [verfasserIn] Xiaohao Liu [verfasserIn] Xiaolei Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 18, p 6533 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:18, p 6533 |
Links: |
---|
DOI / URN: |
10.3390/en15186533 |
---|
Katalog-ID: |
DOAJ034066144 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ034066144 | ||
003 | DE-627 | ||
005 | 20240414204822.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15186533 |2 doi | |
035 | |a (DE-627)DOAJ034066144 | ||
035 | |a (DE-599)DOAJ4972120e6df7409180972d2d487a3ce1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Zhaobin Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements. | ||
650 | 4 | |a wind turbine wake | |
650 | 4 | |a large-eddy simulation | |
650 | 4 | |a turbine parameterization | |
650 | 4 | |a actuator disk | |
650 | 4 | |a actuator line | |
650 | 4 | |a actuator surface | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Xiaohao Liu |e verfasserin |4 aut | |
700 | 0 | |a Xiaolei Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 18, p 6533 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:18, p 6533 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15186533 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4972120e6df7409180972d2d487a3ce1 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/18/6533 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 18, p 6533 |
author_variant |
z l zl x l xl x y xy |
---|---|
matchkey_str |
article:19961073:2022----::eiwfubnprmtrztomdlfragedsmlt |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15186533 doi (DE-627)DOAJ034066144 (DE-599)DOAJ4972120e6df7409180972d2d487a3ce1 DE-627 ger DE-627 rakwb eng Zhaobin Li verfasserin aut Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements. wind turbine wake large-eddy simulation turbine parameterization actuator disk actuator line actuator surface Technology T Xiaohao Liu verfasserin aut Xiaolei Yang verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6533 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6533 https://doi.org/10.3390/en15186533 kostenfrei https://doaj.org/article/4972120e6df7409180972d2d487a3ce1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6533 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6533 |
spelling |
10.3390/en15186533 doi (DE-627)DOAJ034066144 (DE-599)DOAJ4972120e6df7409180972d2d487a3ce1 DE-627 ger DE-627 rakwb eng Zhaobin Li verfasserin aut Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements. wind turbine wake large-eddy simulation turbine parameterization actuator disk actuator line actuator surface Technology T Xiaohao Liu verfasserin aut Xiaolei Yang verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6533 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6533 https://doi.org/10.3390/en15186533 kostenfrei https://doaj.org/article/4972120e6df7409180972d2d487a3ce1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6533 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6533 |
allfields_unstemmed |
10.3390/en15186533 doi (DE-627)DOAJ034066144 (DE-599)DOAJ4972120e6df7409180972d2d487a3ce1 DE-627 ger DE-627 rakwb eng Zhaobin Li verfasserin aut Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements. wind turbine wake large-eddy simulation turbine parameterization actuator disk actuator line actuator surface Technology T Xiaohao Liu verfasserin aut Xiaolei Yang verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6533 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6533 https://doi.org/10.3390/en15186533 kostenfrei https://doaj.org/article/4972120e6df7409180972d2d487a3ce1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6533 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6533 |
allfieldsGer |
10.3390/en15186533 doi (DE-627)DOAJ034066144 (DE-599)DOAJ4972120e6df7409180972d2d487a3ce1 DE-627 ger DE-627 rakwb eng Zhaobin Li verfasserin aut Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements. wind turbine wake large-eddy simulation turbine parameterization actuator disk actuator line actuator surface Technology T Xiaohao Liu verfasserin aut Xiaolei Yang verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6533 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6533 https://doi.org/10.3390/en15186533 kostenfrei https://doaj.org/article/4972120e6df7409180972d2d487a3ce1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6533 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6533 |
allfieldsSound |
10.3390/en15186533 doi (DE-627)DOAJ034066144 (DE-599)DOAJ4972120e6df7409180972d2d487a3ce1 DE-627 ger DE-627 rakwb eng Zhaobin Li verfasserin aut Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements. wind turbine wake large-eddy simulation turbine parameterization actuator disk actuator line actuator surface Technology T Xiaohao Liu verfasserin aut Xiaolei Yang verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6533 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6533 https://doi.org/10.3390/en15186533 kostenfrei https://doaj.org/article/4972120e6df7409180972d2d487a3ce1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6533 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6533 |
language |
English |
source |
In Energies 15(2022), 18, p 6533 volume:15 year:2022 number:18, p 6533 |
sourceStr |
In Energies 15(2022), 18, p 6533 volume:15 year:2022 number:18, p 6533 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wind turbine wake large-eddy simulation turbine parameterization actuator disk actuator line actuator surface Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Zhaobin Li @@aut@@ Xiaohao Liu @@aut@@ Xiaolei Yang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ034066144 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034066144</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15186533</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034066144</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4972120e6df7409180972d2d487a3ce1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhaobin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind turbine wake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">large-eddy simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">turbine parameterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator disk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator surface</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohao Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaolei Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 18, p 6533</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18, p 6533</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15186533</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4972120e6df7409180972d2d487a3ce1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/18/6533</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">18, p 6533</subfield></datafield></record></collection>
|
author |
Zhaobin Li |
spellingShingle |
Zhaobin Li misc wind turbine wake misc large-eddy simulation misc turbine parameterization misc actuator disk misc actuator line misc actuator surface misc Technology misc T Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes |
authorStr |
Zhaobin Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes wind turbine wake large-eddy simulation turbine parameterization actuator disk actuator line actuator surface |
topic |
misc wind turbine wake misc large-eddy simulation misc turbine parameterization misc actuator disk misc actuator line misc actuator surface misc Technology misc T |
topic_unstemmed |
misc wind turbine wake misc large-eddy simulation misc turbine parameterization misc actuator disk misc actuator line misc actuator surface misc Technology misc T |
topic_browse |
misc wind turbine wake misc large-eddy simulation misc turbine parameterization misc actuator disk misc actuator line misc actuator surface misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes |
ctrlnum |
(DE-627)DOAJ034066144 (DE-599)DOAJ4972120e6df7409180972d2d487a3ce1 |
title_full |
Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes |
author_sort |
Zhaobin Li |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Zhaobin Li Xiaohao Liu Xiaolei Yang |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhaobin Li |
doi_str_mv |
10.3390/en15186533 |
author2-role |
verfasserin |
title_sort |
review of turbine parameterization models for large-eddy simulation of wind turbine wakes |
title_auth |
Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes |
abstract |
Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements. |
abstractGer |
Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements. |
abstract_unstemmed |
Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
18, p 6533 |
title_short |
Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes |
url |
https://doi.org/10.3390/en15186533 https://doaj.org/article/4972120e6df7409180972d2d487a3ce1 https://www.mdpi.com/1996-1073/15/18/6533 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Xiaohao Liu Xiaolei Yang |
author2Str |
Xiaohao Liu Xiaolei Yang |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15186533 |
up_date |
2024-07-03T21:13:30.086Z |
_version_ |
1803593931909234688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034066144</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15186533</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034066144</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4972120e6df7409180972d2d487a3ce1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhaobin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wind turbine parameterization models, which are often employed to avoid the computational cost of resolving the blade aerodynamics, are critical for the capability of large-eddy simulation in predicting wind turbine wakes. In this paper, we review the existing wind turbine parameterization models, i.e., the actuator disk model, the actuator line model, and the actuator surface model, by presenting the fundamental concepts, some advanced issues (i.e., the force distribution approaches, the method for velocity sampling, and the tip loss correction), and their applications to utility-scale wind farms. Emphasis is placed on the predictive capability of different parameterizations for different wake characteristics, such as the blade load, the tip vortices and hub vortex in the near wake, and the meandering of the far wake. The literature demonstrated the importance of taking into account the effects of nacelle and tower in wind turbine wake predictions. The predictive capability of the actuator disk model with different model complexities, which is preferred in wind farm simulations, is systematically reviewed for different inflows and different wind turbine designs. Applications to wind farms show good agreements between simulation results and measurements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind turbine wake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">large-eddy simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">turbine parameterization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator disk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">actuator surface</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohao Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaolei Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 18, p 6533</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18, p 6533</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15186533</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4972120e6df7409180972d2d487a3ce1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/18/6533</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">18, p 6533</subfield></datafield></record></collection>
|
score |
7.400899 |