The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review
Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of resea...
Ausführliche Beschreibung
Autor*in: |
Désiré Ndahirwa [verfasserIn] Hafida Zmamou [verfasserIn] Hélène Lenormand [verfasserIn] Nathalie Leblanc [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Cleaner Materials - Elsevier, 2021, 5(2022), Seite 100123- |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2022 ; pages:100123- |
Links: |
---|
DOI / URN: |
10.1016/j.clema.2022.100123 |
---|
Katalog-ID: |
DOAJ034294112 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ034294112 | ||
003 | DE-627 | ||
005 | 20230307185709.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.clema.2022.100123 |2 doi | |
035 | |a (DE-627)DOAJ034294112 | ||
035 | |a (DE-599)DOAJf625dfe9327f4f47b7d390ab10c4c6f6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Désiré Ndahirwa |e verfasserin |4 aut | |
245 | 1 | 4 | |a The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume. | ||
650 | 4 | |a Supplementary cementitious materials | |
650 | 4 | |a Cement-based materials | |
650 | 4 | |a Hydration | |
650 | 4 | |a Durability | |
650 | 4 | |a Chloride binding ability | |
650 | 4 | |a Shrinkage | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Hafida Zmamou |e verfasserin |4 aut | |
700 | 0 | |a Hélène Lenormand |e verfasserin |4 aut | |
700 | 0 | |a Nathalie Leblanc |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Cleaner Materials |d Elsevier, 2021 |g 5(2022), Seite 100123- |w (DE-627)1777437725 |x 27723976 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2022 |g pages:100123- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.clema.2022.100123 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f625dfe9327f4f47b7d390ab10c4c6f6 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2772397622000831 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2772-3976 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2022 |h 100123- |
author_variant |
d n dn h z hz h l hl n l nl |
---|---|
matchkey_str |
article:27723976:2022----::hrlosplmnayeettosaeilihdainuaiiynsrnaefeetaemtrashie |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1016/j.clema.2022.100123 doi (DE-627)DOAJ034294112 (DE-599)DOAJf625dfe9327f4f47b7d390ab10c4c6f6 DE-627 ger DE-627 rakwb eng TA401-492 Désiré Ndahirwa verfasserin aut The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume. Supplementary cementitious materials Cement-based materials Hydration Durability Chloride binding ability Shrinkage Materials of engineering and construction. Mechanics of materials Hafida Zmamou verfasserin aut Hélène Lenormand verfasserin aut Nathalie Leblanc verfasserin aut In Cleaner Materials Elsevier, 2021 5(2022), Seite 100123- (DE-627)1777437725 27723976 nnns volume:5 year:2022 pages:100123- https://doi.org/10.1016/j.clema.2022.100123 kostenfrei https://doaj.org/article/f625dfe9327f4f47b7d390ab10c4c6f6 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772397622000831 kostenfrei https://doaj.org/toc/2772-3976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2022 100123- |
spelling |
10.1016/j.clema.2022.100123 doi (DE-627)DOAJ034294112 (DE-599)DOAJf625dfe9327f4f47b7d390ab10c4c6f6 DE-627 ger DE-627 rakwb eng TA401-492 Désiré Ndahirwa verfasserin aut The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume. Supplementary cementitious materials Cement-based materials Hydration Durability Chloride binding ability Shrinkage Materials of engineering and construction. Mechanics of materials Hafida Zmamou verfasserin aut Hélène Lenormand verfasserin aut Nathalie Leblanc verfasserin aut In Cleaner Materials Elsevier, 2021 5(2022), Seite 100123- (DE-627)1777437725 27723976 nnns volume:5 year:2022 pages:100123- https://doi.org/10.1016/j.clema.2022.100123 kostenfrei https://doaj.org/article/f625dfe9327f4f47b7d390ab10c4c6f6 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772397622000831 kostenfrei https://doaj.org/toc/2772-3976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2022 100123- |
allfields_unstemmed |
10.1016/j.clema.2022.100123 doi (DE-627)DOAJ034294112 (DE-599)DOAJf625dfe9327f4f47b7d390ab10c4c6f6 DE-627 ger DE-627 rakwb eng TA401-492 Désiré Ndahirwa verfasserin aut The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume. Supplementary cementitious materials Cement-based materials Hydration Durability Chloride binding ability Shrinkage Materials of engineering and construction. Mechanics of materials Hafida Zmamou verfasserin aut Hélène Lenormand verfasserin aut Nathalie Leblanc verfasserin aut In Cleaner Materials Elsevier, 2021 5(2022), Seite 100123- (DE-627)1777437725 27723976 nnns volume:5 year:2022 pages:100123- https://doi.org/10.1016/j.clema.2022.100123 kostenfrei https://doaj.org/article/f625dfe9327f4f47b7d390ab10c4c6f6 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772397622000831 kostenfrei https://doaj.org/toc/2772-3976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2022 100123- |
allfieldsGer |
10.1016/j.clema.2022.100123 doi (DE-627)DOAJ034294112 (DE-599)DOAJf625dfe9327f4f47b7d390ab10c4c6f6 DE-627 ger DE-627 rakwb eng TA401-492 Désiré Ndahirwa verfasserin aut The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume. Supplementary cementitious materials Cement-based materials Hydration Durability Chloride binding ability Shrinkage Materials of engineering and construction. Mechanics of materials Hafida Zmamou verfasserin aut Hélène Lenormand verfasserin aut Nathalie Leblanc verfasserin aut In Cleaner Materials Elsevier, 2021 5(2022), Seite 100123- (DE-627)1777437725 27723976 nnns volume:5 year:2022 pages:100123- https://doi.org/10.1016/j.clema.2022.100123 kostenfrei https://doaj.org/article/f625dfe9327f4f47b7d390ab10c4c6f6 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772397622000831 kostenfrei https://doaj.org/toc/2772-3976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2022 100123- |
allfieldsSound |
10.1016/j.clema.2022.100123 doi (DE-627)DOAJ034294112 (DE-599)DOAJf625dfe9327f4f47b7d390ab10c4c6f6 DE-627 ger DE-627 rakwb eng TA401-492 Désiré Ndahirwa verfasserin aut The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume. Supplementary cementitious materials Cement-based materials Hydration Durability Chloride binding ability Shrinkage Materials of engineering and construction. Mechanics of materials Hafida Zmamou verfasserin aut Hélène Lenormand verfasserin aut Nathalie Leblanc verfasserin aut In Cleaner Materials Elsevier, 2021 5(2022), Seite 100123- (DE-627)1777437725 27723976 nnns volume:5 year:2022 pages:100123- https://doi.org/10.1016/j.clema.2022.100123 kostenfrei https://doaj.org/article/f625dfe9327f4f47b7d390ab10c4c6f6 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772397622000831 kostenfrei https://doaj.org/toc/2772-3976 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2022 100123- |
language |
English |
source |
In Cleaner Materials 5(2022), Seite 100123- volume:5 year:2022 pages:100123- |
sourceStr |
In Cleaner Materials 5(2022), Seite 100123- volume:5 year:2022 pages:100123- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Supplementary cementitious materials Cement-based materials Hydration Durability Chloride binding ability Shrinkage Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Cleaner Materials |
authorswithroles_txt_mv |
Désiré Ndahirwa @@aut@@ Hafida Zmamou @@aut@@ Hélène Lenormand @@aut@@ Nathalie Leblanc @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1777437725 |
id |
DOAJ034294112 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034294112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307185709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.clema.2022.100123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034294112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf625dfe9327f4f47b7d390ab10c4c6f6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Désiré Ndahirwa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supplementary cementitious materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cement-based materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Durability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chloride binding ability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shrinkage</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hafida Zmamou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hélène Lenormand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nathalie Leblanc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cleaner Materials</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">5(2022), Seite 100123-</subfield><subfield code="w">(DE-627)1777437725</subfield><subfield code="x">27723976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:100123-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.clema.2022.100123</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f625dfe9327f4f47b7d390ab10c4c6f6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2772397622000831</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2772-3976</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2022</subfield><subfield code="h">100123-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Désiré Ndahirwa |
spellingShingle |
Désiré Ndahirwa misc TA401-492 misc Supplementary cementitious materials misc Cement-based materials misc Hydration misc Durability misc Chloride binding ability misc Shrinkage misc Materials of engineering and construction. Mechanics of materials The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review |
authorStr |
Désiré Ndahirwa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1777437725 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
27723976 |
topic_title |
TA401-492 The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review Supplementary cementitious materials Cement-based materials Hydration Durability Chloride binding ability Shrinkage |
topic |
misc TA401-492 misc Supplementary cementitious materials misc Cement-based materials misc Hydration misc Durability misc Chloride binding ability misc Shrinkage misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Supplementary cementitious materials misc Cement-based materials misc Hydration misc Durability misc Chloride binding ability misc Shrinkage misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Supplementary cementitious materials misc Cement-based materials misc Hydration misc Durability misc Chloride binding ability misc Shrinkage misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cleaner Materials |
hierarchy_parent_id |
1777437725 |
hierarchy_top_title |
Cleaner Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1777437725 |
title |
The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review |
ctrlnum |
(DE-627)DOAJ034294112 (DE-599)DOAJf625dfe9327f4f47b7d390ab10c4c6f6 |
title_full |
The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review |
author_sort |
Désiré Ndahirwa |
journal |
Cleaner Materials |
journalStr |
Cleaner Materials |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
100123 |
author_browse |
Désiré Ndahirwa Hafida Zmamou Hélène Lenormand Nathalie Leblanc |
container_volume |
5 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Désiré Ndahirwa |
doi_str_mv |
10.1016/j.clema.2022.100123 |
author2-role |
verfasserin |
title_sort |
role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: a review |
callnumber |
TA401-492 |
title_auth |
The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review |
abstract |
Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume. |
abstractGer |
Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume. |
abstract_unstemmed |
Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review |
url |
https://doi.org/10.1016/j.clema.2022.100123 https://doaj.org/article/f625dfe9327f4f47b7d390ab10c4c6f6 http://www.sciencedirect.com/science/article/pii/S2772397622000831 https://doaj.org/toc/2772-3976 |
remote_bool |
true |
author2 |
Hafida Zmamou Hélène Lenormand Nathalie Leblanc |
author2Str |
Hafida Zmamou Hélène Lenormand Nathalie Leblanc |
ppnlink |
1777437725 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.clema.2022.100123 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T22:28:11.007Z |
_version_ |
1803598630497550337 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034294112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307185709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.clema.2022.100123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034294112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf625dfe9327f4f47b7d390ab10c4c6f6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Désiré Ndahirwa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Due to strict environmental regulations, the construction sector has observed extensive use of supplementary cementitious materials (SCMs) in recent years. As a result, new alternative SCMs have emerged and research in this particular area has considerably developed. Although a large number of research devoted to cement-based materials blended with SCMs has been conducted, there continue to be debates about their characteristics, effects on the hydration, and the durability of cement pastes, mortars and concrete. Therefore, this review summarized the most widespread methods for SCMs characterization, major characteristics, and the role of each of the five widely used SCMs including coal fly ash, silica fume, ground granulated blast furnace slag, limestone powder, and metakaolin in the hydration and durability of cement-based materials. Ultimately, their environmental and economic advantages were also reviewed. A huge variation in the SCMs physical and chemical characteristics has been highlighted as the major concern when it comes to the establishment of standards and characterization methods. The literature has also shown that the hydration, compressive strength and durability of cement-based materials blended with SCMs typically depend on the replacement ratios, fineness and synergic effect of the SCMs’ reactivity mechanisms. Owing to their high specific surface area and pozzolanic activity, partial cement replacement with a suitable amount of silica fume and metakaolin considerably accelerates the hydration and increases the heat of hydration of cement-based materials. Besides, limestone powder and ground granulated blast slag reportedly present better environmental and economic benefits compared to metakaolin and silica fume.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supplementary cementitious materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cement-based materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Durability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chloride binding ability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shrinkage</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hafida Zmamou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hélène Lenormand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nathalie Leblanc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Cleaner Materials</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">5(2022), Seite 100123-</subfield><subfield code="w">(DE-627)1777437725</subfield><subfield code="x">27723976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:100123-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.clema.2022.100123</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f625dfe9327f4f47b7d390ab10c4c6f6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2772397622000831</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2772-3976</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2022</subfield><subfield code="h">100123-</subfield></datafield></record></collection>
|
score |
7.4004374 |