Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process
Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functio...
Ausführliche Beschreibung
Autor*in: |
Xinyu Zhao [verfasserIn] Wenbing Tan [verfasserIn] Jingjing Peng [verfasserIn] Qiuling Dang [verfasserIn] Hui Zhang [verfasserIn] Beidou Xi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
In: Environment International - Elsevier, 2019, 135(2020), Seite - |
---|---|
Übergeordnetes Werk: |
volume:135 ; year:2020 ; pages:- |
Links: |
---|
DOI / URN: |
10.1016/j.envint.2019.105380 |
---|
Katalog-ID: |
DOAJ034381791 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ034381791 | ||
003 | DE-627 | ||
005 | 20230307190210.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.envint.2019.105380 |2 doi | |
035 | |a (DE-627)DOAJ034381791 | ||
035 | |a (DE-599)DOAJ1c9473d2bf6549118aa3e64418c20a04 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Xinyu Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol | ||
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Wenbing Tan |e verfasserin |4 aut | |
700 | 0 | |a Jingjing Peng |e verfasserin |4 aut | |
700 | 0 | |a Qiuling Dang |e verfasserin |4 aut | |
700 | 0 | |a Hui Zhang |e verfasserin |4 aut | |
700 | 0 | |a Beidou Xi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Environment International |d Elsevier, 2019 |g 135(2020), Seite - |w (DE-627)306580829 |w (DE-600)1497569-5 |x 01604120 |7 nnns |
773 | 1 | 8 | |g volume:135 |g year:2020 |g pages:- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.envint.2019.105380 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1c9473d2bf6549118aa3e64418c20a04 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0160412019329770 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0160-4120 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 135 |j 2020 |h - |
author_variant |
x z xz w t wt j p jp q d qd h z hz b x bx |
---|---|
matchkey_str |
article:01604120:2020----::iwseoreeednsnhtcahasfeofntoagopwtihmccdfvrnpnahoohn |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
GE |
publishDate |
2020 |
allfields |
10.1016/j.envint.2019.105380 doi (DE-627)DOAJ034381791 (DE-599)DOAJ1c9473d2bf6549118aa3e64418c20a04 DE-627 ger DE-627 rakwb eng GE1-350 Xinyu Zhao verfasserin aut Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol Environmental sciences Wenbing Tan verfasserin aut Jingjing Peng verfasserin aut Qiuling Dang verfasserin aut Hui Zhang verfasserin aut Beidou Xi verfasserin aut In Environment International Elsevier, 2019 135(2020), Seite - (DE-627)306580829 (DE-600)1497569-5 01604120 nnns volume:135 year:2020 pages:- https://doi.org/10.1016/j.envint.2019.105380 kostenfrei https://doaj.org/article/1c9473d2bf6549118aa3e64418c20a04 kostenfrei http://www.sciencedirect.com/science/article/pii/S0160412019329770 kostenfrei https://doaj.org/toc/0160-4120 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 135 2020 - |
spelling |
10.1016/j.envint.2019.105380 doi (DE-627)DOAJ034381791 (DE-599)DOAJ1c9473d2bf6549118aa3e64418c20a04 DE-627 ger DE-627 rakwb eng GE1-350 Xinyu Zhao verfasserin aut Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol Environmental sciences Wenbing Tan verfasserin aut Jingjing Peng verfasserin aut Qiuling Dang verfasserin aut Hui Zhang verfasserin aut Beidou Xi verfasserin aut In Environment International Elsevier, 2019 135(2020), Seite - (DE-627)306580829 (DE-600)1497569-5 01604120 nnns volume:135 year:2020 pages:- https://doi.org/10.1016/j.envint.2019.105380 kostenfrei https://doaj.org/article/1c9473d2bf6549118aa3e64418c20a04 kostenfrei http://www.sciencedirect.com/science/article/pii/S0160412019329770 kostenfrei https://doaj.org/toc/0160-4120 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 135 2020 - |
allfields_unstemmed |
10.1016/j.envint.2019.105380 doi (DE-627)DOAJ034381791 (DE-599)DOAJ1c9473d2bf6549118aa3e64418c20a04 DE-627 ger DE-627 rakwb eng GE1-350 Xinyu Zhao verfasserin aut Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol Environmental sciences Wenbing Tan verfasserin aut Jingjing Peng verfasserin aut Qiuling Dang verfasserin aut Hui Zhang verfasserin aut Beidou Xi verfasserin aut In Environment International Elsevier, 2019 135(2020), Seite - (DE-627)306580829 (DE-600)1497569-5 01604120 nnns volume:135 year:2020 pages:- https://doi.org/10.1016/j.envint.2019.105380 kostenfrei https://doaj.org/article/1c9473d2bf6549118aa3e64418c20a04 kostenfrei http://www.sciencedirect.com/science/article/pii/S0160412019329770 kostenfrei https://doaj.org/toc/0160-4120 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 135 2020 - |
allfieldsGer |
10.1016/j.envint.2019.105380 doi (DE-627)DOAJ034381791 (DE-599)DOAJ1c9473d2bf6549118aa3e64418c20a04 DE-627 ger DE-627 rakwb eng GE1-350 Xinyu Zhao verfasserin aut Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol Environmental sciences Wenbing Tan verfasserin aut Jingjing Peng verfasserin aut Qiuling Dang verfasserin aut Hui Zhang verfasserin aut Beidou Xi verfasserin aut In Environment International Elsevier, 2019 135(2020), Seite - (DE-627)306580829 (DE-600)1497569-5 01604120 nnns volume:135 year:2020 pages:- https://doi.org/10.1016/j.envint.2019.105380 kostenfrei https://doaj.org/article/1c9473d2bf6549118aa3e64418c20a04 kostenfrei http://www.sciencedirect.com/science/article/pii/S0160412019329770 kostenfrei https://doaj.org/toc/0160-4120 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 135 2020 - |
allfieldsSound |
10.1016/j.envint.2019.105380 doi (DE-627)DOAJ034381791 (DE-599)DOAJ1c9473d2bf6549118aa3e64418c20a04 DE-627 ger DE-627 rakwb eng GE1-350 Xinyu Zhao verfasserin aut Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol Environmental sciences Wenbing Tan verfasserin aut Jingjing Peng verfasserin aut Qiuling Dang verfasserin aut Hui Zhang verfasserin aut Beidou Xi verfasserin aut In Environment International Elsevier, 2019 135(2020), Seite - (DE-627)306580829 (DE-600)1497569-5 01604120 nnns volume:135 year:2020 pages:- https://doi.org/10.1016/j.envint.2019.105380 kostenfrei https://doaj.org/article/1c9473d2bf6549118aa3e64418c20a04 kostenfrei http://www.sciencedirect.com/science/article/pii/S0160412019329770 kostenfrei https://doaj.org/toc/0160-4120 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 135 2020 - |
language |
English |
source |
In Environment International 135(2020), Seite - volume:135 year:2020 pages:- |
sourceStr |
In Environment International 135(2020), Seite - volume:135 year:2020 pages:- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Environment International |
authorswithroles_txt_mv |
Xinyu Zhao @@aut@@ Wenbing Tan @@aut@@ Jingjing Peng @@aut@@ Qiuling Dang @@aut@@ Hui Zhang @@aut@@ Beidou Xi @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
306580829 |
id |
DOAJ034381791 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034381791</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307190210.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envint.2019.105380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034381791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c9473d2bf6549118aa3e64418c20a04</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xinyu Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenbing Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingjing Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiuling Dang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hui Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Beidou Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Environment International</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">135(2020), Seite -</subfield><subfield code="w">(DE-627)306580829</subfield><subfield code="w">(DE-600)1497569-5</subfield><subfield code="x">01604120</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envint.2019.105380</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c9473d2bf6549118aa3e64418c20a04</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0160412019329770</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0160-4120</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield><subfield code="j">2020</subfield><subfield code="h">-</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Xinyu Zhao |
spellingShingle |
Xinyu Zhao misc GE1-350 misc Environmental sciences Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process |
authorStr |
Xinyu Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306580829 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
01604120 |
topic_title |
GE1-350 Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process |
topic |
misc GE1-350 misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc Environmental sciences |
topic_browse |
misc GE1-350 misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Environment International |
hierarchy_parent_id |
306580829 |
hierarchy_top_title |
Environment International |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)306580829 (DE-600)1497569-5 |
title |
Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process |
ctrlnum |
(DE-627)DOAJ034381791 (DE-599)DOAJ1c9473d2bf6549118aa3e64418c20a04 |
title_full |
Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process |
author_sort |
Xinyu Zhao |
journal |
Environment International |
journalStr |
Environment International |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Xinyu Zhao Wenbing Tan Jingjing Peng Qiuling Dang Hui Zhang Beidou Xi |
container_volume |
135 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Xinyu Zhao |
doi_str_mv |
10.1016/j.envint.2019.105380 |
author2-role |
verfasserin |
title_sort |
biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process |
callnumber |
GE1-350 |
title_auth |
Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process |
abstract |
Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol |
abstractGer |
Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol |
abstract_unstemmed |
Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process |
url |
https://doi.org/10.1016/j.envint.2019.105380 https://doaj.org/article/1c9473d2bf6549118aa3e64418c20a04 http://www.sciencedirect.com/science/article/pii/S0160412019329770 https://doaj.org/toc/0160-4120 |
remote_bool |
true |
author2 |
Wenbing Tan Jingjing Peng Qiuling Dang Hui Zhang Beidou Xi |
author2Str |
Wenbing Tan Jingjing Peng Qiuling Dang Hui Zhang Beidou Xi |
ppnlink |
306580829 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.envint.2019.105380 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T22:54:45.495Z |
_version_ |
1803600302443593728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034381791</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307190210.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envint.2019.105380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034381791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c9473d2bf6549118aa3e64418c20a04</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xinyu Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Humic acids (HAs) can function as electron mediators for contaminants transformation in different environments. The humus respiration can facilitate pentachlorophenol (PCP) dechlorination during different biowastes composting. However, different characteristics of synthetic pathways of redox functional groups within HAs during different biowastes composting have never been characterized. Herein, we assessed the synthetic pathways of redox functional groups within HAs from protein-, lignocellulose-, and lignin-rich composts that facilitated the microbially reductive dechlorination of PCP, respectively. The results show that the aromatic systems are the major electron-accepting moieties of HAs and function as electron shuttles to facilitate the PCP dechlorination. Amino acid and reducing sugar are the major precursors for the synthesis of redox functional groups within HAs in protein-rich composts, and polyphenols and amino acids are discerned as the significant components to synthesize redox functional groups of HAs in lignocellulose- and lignin-rich composts. Seven groups of bacterial communities based on relationships among remarkable precursors, key bacterial communities, and redox functional groups within HAs are classified as participants in the precursors’ catabolism and aromatic system’ anabolism. Furthermore, the significant environmental factors on the synthetic pathways of redox functional groups within HAs in composting are confirmed by structural equation models. Conclusively, the regulating methods for promoting PCP dechlorination by HAs during different biowastes composting are proposed. Our results can help in understanding the distinct formative mechanisms of redox functional groups within HAs during different biowastes composting, providing insights into a classification-oriented approach for recycling utilization of different biowastes. Keywords: Different biowaste composting, Humic acid, Redox functional groups, Biological metabolism, Pentachlorophenol</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenbing Tan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingjing Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiuling Dang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hui Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Beidou Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Environment International</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">135(2020), Seite -</subfield><subfield code="w">(DE-627)306580829</subfield><subfield code="w">(DE-600)1497569-5</subfield><subfield code="x">01604120</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envint.2019.105380</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c9473d2bf6549118aa3e64418c20a04</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0160412019329770</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0160-4120</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield><subfield code="j">2020</subfield><subfield code="h">-</subfield></datafield></record></collection>
|
score |
7.402611 |