High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images
High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenologica...
Ausführliche Beschreibung
Autor*in: |
Lingbo Yang [verfasserIn] Limin Wang [verfasserIn] Ghali Abdullahi Abubakar [verfasserIn] Jingfeng Huang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Simple Non-Iterative Clustering |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 13(2021), 6, p 1148 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:6, p 1148 |
Links: |
---|
DOI / URN: |
10.3390/rs13061148 |
---|
Katalog-ID: |
DOAJ034889507 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ034889507 | ||
003 | DE-627 | ||
005 | 20240412190655.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs13061148 |2 doi | |
035 | |a (DE-627)DOAJ034889507 | ||
035 | |a (DE-599)DOAJ12f5166c2cb54b2e994ccb490aac7a2f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Lingbo Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research. | ||
650 | 4 | |a high-resolution | |
650 | 4 | |a Simple Non-Iterative Clustering | |
650 | 4 | |a superpixel-based classification | |
650 | 4 | |a superpixel size | |
650 | 4 | |a multi-source | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Limin Wang |e verfasserin |4 aut | |
700 | 0 | |a Ghali Abdullahi Abubakar |e verfasserin |4 aut | |
700 | 0 | |a Jingfeng Huang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 13(2021), 6, p 1148 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:6, p 1148 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs13061148 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/12f5166c2cb54b2e994ccb490aac7a2f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/13/6/1148 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 6, p 1148 |
author_variant |
l y ly l w lw g a a gaa j h jh |
---|---|
matchkey_str |
article:20724292:2021----::iheouinieapnbsdnncemnainnmlior |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/rs13061148 doi (DE-627)DOAJ034889507 (DE-599)DOAJ12f5166c2cb54b2e994ccb490aac7a2f DE-627 ger DE-627 rakwb eng Lingbo Yang verfasserin aut High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research. high-resolution Simple Non-Iterative Clustering superpixel-based classification superpixel size multi-source Science Q Limin Wang verfasserin aut Ghali Abdullahi Abubakar verfasserin aut Jingfeng Huang verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 6, p 1148 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:6, p 1148 https://doi.org/10.3390/rs13061148 kostenfrei https://doaj.org/article/12f5166c2cb54b2e994ccb490aac7a2f kostenfrei https://www.mdpi.com/2072-4292/13/6/1148 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 6, p 1148 |
spelling |
10.3390/rs13061148 doi (DE-627)DOAJ034889507 (DE-599)DOAJ12f5166c2cb54b2e994ccb490aac7a2f DE-627 ger DE-627 rakwb eng Lingbo Yang verfasserin aut High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research. high-resolution Simple Non-Iterative Clustering superpixel-based classification superpixel size multi-source Science Q Limin Wang verfasserin aut Ghali Abdullahi Abubakar verfasserin aut Jingfeng Huang verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 6, p 1148 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:6, p 1148 https://doi.org/10.3390/rs13061148 kostenfrei https://doaj.org/article/12f5166c2cb54b2e994ccb490aac7a2f kostenfrei https://www.mdpi.com/2072-4292/13/6/1148 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 6, p 1148 |
allfields_unstemmed |
10.3390/rs13061148 doi (DE-627)DOAJ034889507 (DE-599)DOAJ12f5166c2cb54b2e994ccb490aac7a2f DE-627 ger DE-627 rakwb eng Lingbo Yang verfasserin aut High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research. high-resolution Simple Non-Iterative Clustering superpixel-based classification superpixel size multi-source Science Q Limin Wang verfasserin aut Ghali Abdullahi Abubakar verfasserin aut Jingfeng Huang verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 6, p 1148 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:6, p 1148 https://doi.org/10.3390/rs13061148 kostenfrei https://doaj.org/article/12f5166c2cb54b2e994ccb490aac7a2f kostenfrei https://www.mdpi.com/2072-4292/13/6/1148 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 6, p 1148 |
allfieldsGer |
10.3390/rs13061148 doi (DE-627)DOAJ034889507 (DE-599)DOAJ12f5166c2cb54b2e994ccb490aac7a2f DE-627 ger DE-627 rakwb eng Lingbo Yang verfasserin aut High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research. high-resolution Simple Non-Iterative Clustering superpixel-based classification superpixel size multi-source Science Q Limin Wang verfasserin aut Ghali Abdullahi Abubakar verfasserin aut Jingfeng Huang verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 6, p 1148 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:6, p 1148 https://doi.org/10.3390/rs13061148 kostenfrei https://doaj.org/article/12f5166c2cb54b2e994ccb490aac7a2f kostenfrei https://www.mdpi.com/2072-4292/13/6/1148 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 6, p 1148 |
allfieldsSound |
10.3390/rs13061148 doi (DE-627)DOAJ034889507 (DE-599)DOAJ12f5166c2cb54b2e994ccb490aac7a2f DE-627 ger DE-627 rakwb eng Lingbo Yang verfasserin aut High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research. high-resolution Simple Non-Iterative Clustering superpixel-based classification superpixel size multi-source Science Q Limin Wang verfasserin aut Ghali Abdullahi Abubakar verfasserin aut Jingfeng Huang verfasserin aut In Remote Sensing MDPI AG, 2009 13(2021), 6, p 1148 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:13 year:2021 number:6, p 1148 https://doi.org/10.3390/rs13061148 kostenfrei https://doaj.org/article/12f5166c2cb54b2e994ccb490aac7a2f kostenfrei https://www.mdpi.com/2072-4292/13/6/1148 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 13 2021 6, p 1148 |
language |
English |
source |
In Remote Sensing 13(2021), 6, p 1148 volume:13 year:2021 number:6, p 1148 |
sourceStr |
In Remote Sensing 13(2021), 6, p 1148 volume:13 year:2021 number:6, p 1148 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
high-resolution Simple Non-Iterative Clustering superpixel-based classification superpixel size multi-source Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Lingbo Yang @@aut@@ Limin Wang @@aut@@ Ghali Abdullahi Abubakar @@aut@@ Jingfeng Huang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ034889507 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034889507</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412190655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13061148</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034889507</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12f5166c2cb54b2e994ccb490aac7a2f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lingbo Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Non-Iterative Clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superpixel-based classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superpixel size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-source</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Limin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ghali Abdullahi Abubakar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingfeng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 6, p 1148</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 1148</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13061148</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12f5166c2cb54b2e994ccb490aac7a2f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/6/1148</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 1148</subfield></datafield></record></collection>
|
author |
Lingbo Yang |
spellingShingle |
Lingbo Yang misc high-resolution misc Simple Non-Iterative Clustering misc superpixel-based classification misc superpixel size misc multi-source misc Science misc Q High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images |
authorStr |
Lingbo Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images high-resolution Simple Non-Iterative Clustering superpixel-based classification superpixel size multi-source |
topic |
misc high-resolution misc Simple Non-Iterative Clustering misc superpixel-based classification misc superpixel size misc multi-source misc Science misc Q |
topic_unstemmed |
misc high-resolution misc Simple Non-Iterative Clustering misc superpixel-based classification misc superpixel size misc multi-source misc Science misc Q |
topic_browse |
misc high-resolution misc Simple Non-Iterative Clustering misc superpixel-based classification misc superpixel size misc multi-source misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images |
ctrlnum |
(DE-627)DOAJ034889507 (DE-599)DOAJ12f5166c2cb54b2e994ccb490aac7a2f |
title_full |
High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images |
author_sort |
Lingbo Yang |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Lingbo Yang Limin Wang Ghali Abdullahi Abubakar Jingfeng Huang |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Lingbo Yang |
doi_str_mv |
10.3390/rs13061148 |
author2-role |
verfasserin |
title_sort |
high-resolution rice mapping based on snic segmentation and multi-source remote sensing images |
title_auth |
High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images |
abstract |
High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research. |
abstractGer |
High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research. |
abstract_unstemmed |
High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
6, p 1148 |
title_short |
High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images |
url |
https://doi.org/10.3390/rs13061148 https://doaj.org/article/12f5166c2cb54b2e994ccb490aac7a2f https://www.mdpi.com/2072-4292/13/6/1148 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Limin Wang Ghali Abdullahi Abubakar Jingfeng Huang |
author2Str |
Limin Wang Ghali Abdullahi Abubakar Jingfeng Huang |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs13061148 |
up_date |
2024-07-04T01:00:27.478Z |
_version_ |
1803608210780717056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ034889507</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412190655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs13061148</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ034889507</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ12f5166c2cb54b2e994ccb490aac7a2f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lingbo Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Non-Iterative Clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superpixel-based classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superpixel size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-source</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Limin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ghali Abdullahi Abubakar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingfeng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">13(2021), 6, p 1148</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 1148</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs13061148</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/12f5166c2cb54b2e994ccb490aac7a2f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/13/6/1148</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 1148</subfield></datafield></record></collection>
|
score |
7.4005327 |